Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch import Tensor
|
5 |
+
from transformers import AutoTokenizer, AutoModel
|
6 |
+
|
7 |
+
def last_token_pool(last_hidden_states: Tensor,
|
8 |
+
attention_mask: Tensor) -> Tensor:
|
9 |
+
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
|
10 |
+
if left_padding:
|
11 |
+
return last_hidden_states[:, -1]
|
12 |
+
else:
|
13 |
+
sequence_lengths = attention_mask.sum(dim=1) - 1
|
14 |
+
batch_size = last_hidden_states.shape[0]
|
15 |
+
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
|
16 |
+
|
17 |
+
def get_similarity_scores(queries: list, passages: list, model, tokenizer):
|
18 |
+
tokenizer.add_eos_token = True
|
19 |
+
|
20 |
+
max_length = 4096
|
21 |
+
input_texts = queries + passages
|
22 |
+
batch_dict = tokenizer(input_texts, max_length=max_length - 1, padding=True, truncation=True, return_tensors="pt")
|
23 |
+
outputs = model(**batch_dict)
|
24 |
+
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
25 |
+
|
26 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
27 |
+
scores = (embeddings[:len(queries)] @ embeddings[len(queries):].T) * 100
|
28 |
+
return scores.tolist()
|
29 |
+
|
30 |
+
def similarity_ui(keyName, field1, field2, field3):
|
31 |
+
task = 'Given a keyName, find similarity score against provided fields'
|
32 |
+
queries = [
|
33 |
+
keyName
|
34 |
+
]
|
35 |
+
passages = [
|
36 |
+
field1,
|
37 |
+
field2,
|
38 |
+
field3
|
39 |
+
]
|
40 |
+
|
41 |
+
scores = get_similarity_scores(queries, passages, model, tokenizer)
|
42 |
+
return {'Similarity Scores': scores}
|
43 |
+
|
44 |
+
# Load model and tokenizer
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained('Salesforce/SFR-Embedding-Mistral')
|
46 |
+
model = AutoModel.from_pretrained('Salesforce/SFR-Embedding-Mistral')
|
47 |
+
|
48 |
+
# Create Gradio Interface
|
49 |
+
gr.Interface(
|
50 |
+
fn=similarity_ui,
|
51 |
+
inputs=["text", "text","text","text",],
|
52 |
+
outputs="text",
|
53 |
+
title="Similarity Score Calculator",
|
54 |
+
description="Enter a Key Name and 3 Fields to find similarity scores"
|
55 |
+
).launch()
|