Spaces:
Runtime error
Runtime error
Update src/transcription_utils.py
Browse files- src/transcription_utils.py +175 -175
src/transcription_utils.py
CHANGED
|
@@ -1,176 +1,176 @@
|
|
| 1 |
-
import whisperx
|
| 2 |
-
import json
|
| 3 |
-
import os
|
| 4 |
-
import torch
|
| 5 |
-
import mimetypes
|
| 6 |
-
import shutil
|
| 7 |
-
|
| 8 |
-
# Define language options
|
| 9 |
-
language_options = {
|
| 10 |
-
"Identify": None,
|
| 11 |
-
"English": "en", "Spanish": "es", "Chinese": "zh", "Hindi": "hi", "Arabic": "ar",
|
| 12 |
-
"Portuguese": "pt", "Bengali": "bn", "Russian": "ru", "Japanese": "ja", "Punjabi": "pa",
|
| 13 |
-
"German": "de", "Javanese": "jv", "Wu Chinese": "zh", "Malay": "ms", "Telugu": "te",
|
| 14 |
-
"Vietnamese": "vi", "Korean": "ko", "French": "fr", "Marathi": "mr", "Turkish": "tr"
|
| 15 |
-
}
|
| 16 |
-
|
| 17 |
-
# Available models for transcription
|
| 18 |
-
model_options = {
|
| 19 |
-
"Large-
|
| 20 |
-
"Medium": "medium",
|
| 21 |
-
"Small": "small",
|
| 22 |
-
"Base": "base"
|
| 23 |
-
}
|
| 24 |
-
|
| 25 |
-
# Initializes the ModelManager by setting default values and loading a model based on system capabilities (CUDA availability).
|
| 26 |
-
class ModelManager:
|
| 27 |
-
def __init__(self):
|
| 28 |
-
self.current_model = None
|
| 29 |
-
self.current_model_name = None
|
| 30 |
-
self.current_device = None
|
| 31 |
-
if torch.cuda.is_available():
|
| 32 |
-
default_device = "cuda"
|
| 33 |
-
default_model = "Large-
|
| 34 |
-
else:
|
| 35 |
-
default_device = "cpu"
|
| 36 |
-
default_model = "
|
| 37 |
-
self.load_model(default_model, default_device)
|
| 38 |
-
|
| 39 |
-
def load_model(self, model_choice, device):
|
| 40 |
-
if self.current_model is None or model_choice != self.current_model_name or device != self.current_device:
|
| 41 |
-
print(f"Attempting to load model: {model_choice} on device: {device}")
|
| 42 |
-
compute_type = "float32" if device == "cpu" else "float16"
|
| 43 |
-
self.current_model = whisperx.load_model(model_options[model_choice], device, compute_type=compute_type)
|
| 44 |
-
self.current_model_name = model_choice
|
| 45 |
-
self.current_device = device
|
| 46 |
-
else:
|
| 47 |
-
print(f"Using already loaded model: {self.current_model_name} on device: {self.current_device}")
|
| 48 |
-
return self.current_model
|
| 49 |
-
|
| 50 |
-
# Validates if the given file path corresponds to a multimedia file (audio or video) by checking MIME types and specific file extensions.
|
| 51 |
-
def validate_multimedia_file(file_path):
|
| 52 |
-
file_path = os.path.normpath(file_path)
|
| 53 |
-
mime_type, _ = mimetypes.guess_type(file_path)
|
| 54 |
-
if mime_type and (mime_type.startswith('audio') or mime_type.startswith('video')):
|
| 55 |
-
return file_path
|
| 56 |
-
else:
|
| 57 |
-
if file_path.lower().endswith(('.mp3', '.mp4', '.wav', '.avi', '.mov', '.flv')):
|
| 58 |
-
return file_path
|
| 59 |
-
else:
|
| 60 |
-
raise ValueError("The uploaded file is not a multimedia file. Please upload an appropriate audio or video file.")
|
| 61 |
-
|
| 62 |
-
# Transcribes a multimedia file
|
| 63 |
-
def transcribe(file_obj, device, language, model_choice, model_manager):
|
| 64 |
-
"""
|
| 65 |
-
Transcribes a multimedia file using a specified model, handling file operations,
|
| 66 |
-
language identification, and transcription alignment, and outputs transcription in multiple formats.
|
| 67 |
-
"""
|
| 68 |
-
_, ext = os.path.splitext(file_obj.name)
|
| 69 |
-
temp_dir = os.path.join(os.getcwd(), 'Temp')
|
| 70 |
-
|
| 71 |
-
if not os.path.exists(temp_dir):
|
| 72 |
-
os.makedirs(temp_dir)
|
| 73 |
-
new_file_path = os.path.join(temp_dir, f'resource{ext}')
|
| 74 |
-
|
| 75 |
-
shutil.copy(file_obj.name, new_file_path)
|
| 76 |
-
|
| 77 |
-
model = model_manager.load_model(model_choice, device)
|
| 78 |
-
|
| 79 |
-
validated_file_path = validate_multimedia_file(new_file_path)
|
| 80 |
-
audio = whisperx.load_audio(validated_file_path)
|
| 81 |
-
|
| 82 |
-
if language == "Identify":
|
| 83 |
-
result = model.transcribe(audio)
|
| 84 |
-
language_code = result["language"]
|
| 85 |
-
else:
|
| 86 |
-
language_code = language_options[language]
|
| 87 |
-
result = model.transcribe(audio, language=language_code)
|
| 88 |
-
|
| 89 |
-
model_a, metadata = whisperx.load_align_model(language_code=language_code, device=device)
|
| 90 |
-
try:
|
| 91 |
-
aligned_segments = []
|
| 92 |
-
for segment in result["segments"]:
|
| 93 |
-
aligned_segment = whisperx.align([segment], model_a, metadata, audio, device, return_char_alignments=False)
|
| 94 |
-
aligned_segments.extend(aligned_segment["segments"])
|
| 95 |
-
except Exception as e:
|
| 96 |
-
print(f"Error during alignment: {e}")
|
| 97 |
-
return None
|
| 98 |
-
|
| 99 |
-
segments_output = {"segments": aligned_segments}
|
| 100 |
-
json_output = json.dumps(segments_output, ensure_ascii=False, indent=4)
|
| 101 |
-
json_file_path = download_json_interface(json_output, temp_dir)
|
| 102 |
-
txt_path = save_as_text(aligned_segments, temp_dir)
|
| 103 |
-
vtt_path = save_as_vtt(aligned_segments, temp_dir)
|
| 104 |
-
srt_path = save_as_srt(aligned_segments, temp_dir)
|
| 105 |
-
return json_file_path, txt_path, vtt_path, srt_path
|
| 106 |
-
|
| 107 |
-
# Saves the transcription text of audio segments to a file in the specified temporary directory and returns the file path.
|
| 108 |
-
def save_as_text(segments, temp_dir):
|
| 109 |
-
txt_file_path = os.path.join(temp_dir, 'transcription_output.txt')
|
| 110 |
-
with open(txt_file_path, 'w', encoding='utf-8') as txt_file:
|
| 111 |
-
for segment in segments:
|
| 112 |
-
txt_file.write(f"{segment['text'].strip()}\n")
|
| 113 |
-
return txt_file_path
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
def save_as_vtt(segments, temp_dir):
|
| 117 |
-
"""
|
| 118 |
-
Saves the transcription text as a .vtt file (Web Video Text Tracks format),
|
| 119 |
-
which includes timestamps for each segment, in the specified temporary directory and returns the file path.
|
| 120 |
-
"""
|
| 121 |
-
vtt_file_path = os.path.join(temp_dir, 'transcription_output.vtt')
|
| 122 |
-
with open(vtt_file_path, 'w', encoding='utf-8') as vtt_file:
|
| 123 |
-
vtt_file.write("WEBVTT\n\n")
|
| 124 |
-
for i, segment in enumerate(segments):
|
| 125 |
-
start = segment['start']
|
| 126 |
-
end = segment['end']
|
| 127 |
-
vtt_file.write(f"{i}\n")
|
| 128 |
-
vtt_file.write(f"{format_time(start)} --> {format_time(end)}\n")
|
| 129 |
-
vtt_file.write(f"{segment['text'].strip()}\n\n")
|
| 130 |
-
return vtt_file_path
|
| 131 |
-
|
| 132 |
-
def download_json_interface(json_data, temp_dir):
|
| 133 |
-
"""
|
| 134 |
-
Reads JSON-formatted transcription data, modifies and re-saves it in a neatly
|
| 135 |
-
formatted JSON file in the specified temporary directory, and returns the file path.
|
| 136 |
-
"""
|
| 137 |
-
json_file_path = os.path.join(temp_dir, 'transcription_output.json')
|
| 138 |
-
with open(json_file_path, 'w', encoding='utf-8') as json_file:
|
| 139 |
-
json_data = json.loads(json_data)
|
| 140 |
-
for segment in json_data['segments']:
|
| 141 |
-
segment['text'] = segment['text'].strip()
|
| 142 |
-
json_data = json.dumps(json_data, ensure_ascii=False, indent=4)
|
| 143 |
-
json_file.write(json_data)
|
| 144 |
-
return json_file_path
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
def save_as_srt(segments, temp_dir):
|
| 148 |
-
"""
|
| 149 |
-
Saves the transcription text as an .srt file (SubRip Subtitle format),
|
| 150 |
-
which includes numbered entries with start and end times and corresponding text for each segment,
|
| 151 |
-
in the specified temporary directory and returns the file path.
|
| 152 |
-
"""
|
| 153 |
-
srt_file_path = os.path.join(temp_dir, 'transcription_output.srt')
|
| 154 |
-
with open(srt_file_path, 'w', encoding='utf-8') as srt_file:
|
| 155 |
-
for i, segment in enumerate(segments):
|
| 156 |
-
start = segment['start']
|
| 157 |
-
end = segment['end']
|
| 158 |
-
srt_file.write(f"{i+1}\n")
|
| 159 |
-
srt_file.write(f"{format_time_srt(start)} --> {format_time_srt(end)}\n")
|
| 160 |
-
srt_file.write(f"{segment['text'].strip()}\n\n")
|
| 161 |
-
return srt_file_path
|
| 162 |
-
|
| 163 |
-
# Converts a time value in seconds to a formatted string in the "hours:minutes:seconds,milliseconds" format, used for timestamps in VTT files.
|
| 164 |
-
def format_time(time_in_seconds):
|
| 165 |
-
hours = int(time_in_seconds // 3600)
|
| 166 |
-
minutes = int((time_in_seconds % 3600) // 60)
|
| 167 |
-
seconds = time_in_seconds % 60
|
| 168 |
-
return f"{hours:02}:{minutes:02}:{seconds:06.3f}"
|
| 169 |
-
|
| 170 |
-
# Converts a time value in seconds to a formatted string suitable for SRT files, specifically in the "hours:minutes:seconds,milliseconds" format.
|
| 171 |
-
def format_time_srt(time_in_seconds):
|
| 172 |
-
hours = int(time_in_seconds // 3600)
|
| 173 |
-
minutes = int((time_in_seconds % 3600) // 60)
|
| 174 |
-
seconds = int(time_in_seconds % 60)
|
| 175 |
-
milliseconds = int((time_in_seconds - int(time_in_seconds)) * 1000)
|
| 176 |
return f"{hours:02}:{minutes:02}:{seconds:02},{milliseconds:03}"
|
|
|
|
| 1 |
+
import whisperx
|
| 2 |
+
import json
|
| 3 |
+
import os
|
| 4 |
+
import torch
|
| 5 |
+
import mimetypes
|
| 6 |
+
import shutil
|
| 7 |
+
|
| 8 |
+
# Define language options
|
| 9 |
+
language_options = {
|
| 10 |
+
"Identify": None,
|
| 11 |
+
"English": "en", "Spanish": "es", "Chinese": "zh", "Hindi": "hi", "Arabic": "ar",
|
| 12 |
+
"Portuguese": "pt", "Bengali": "bn", "Russian": "ru", "Japanese": "ja", "Punjabi": "pa",
|
| 13 |
+
"German": "de", "Javanese": "jv", "Wu Chinese": "zh", "Malay": "ms", "Telugu": "te",
|
| 14 |
+
"Vietnamese": "vi", "Korean": "ko", "French": "fr", "Marathi": "mr", "Turkish": "tr"
|
| 15 |
+
}
|
| 16 |
+
|
| 17 |
+
# Available models for transcription
|
| 18 |
+
model_options = {
|
| 19 |
+
"Large-v3": "large-v3",
|
| 20 |
+
"Medium": "medium",
|
| 21 |
+
"Small": "small",
|
| 22 |
+
"Base": "base"
|
| 23 |
+
}
|
| 24 |
+
|
| 25 |
+
# Initializes the ModelManager by setting default values and loading a model based on system capabilities (CUDA availability).
|
| 26 |
+
class ModelManager:
|
| 27 |
+
def __init__(self):
|
| 28 |
+
self.current_model = None
|
| 29 |
+
self.current_model_name = None
|
| 30 |
+
self.current_device = None
|
| 31 |
+
if torch.cuda.is_available():
|
| 32 |
+
default_device = "cuda"
|
| 33 |
+
default_model = "Large-v3"
|
| 34 |
+
else:
|
| 35 |
+
default_device = "cpu"
|
| 36 |
+
default_model = "Small"
|
| 37 |
+
self.load_model(default_model, default_device)
|
| 38 |
+
|
| 39 |
+
def load_model(self, model_choice, device):
|
| 40 |
+
if self.current_model is None or model_choice != self.current_model_name or device != self.current_device:
|
| 41 |
+
print(f"Attempting to load model: {model_choice} on device: {device}")
|
| 42 |
+
compute_type = "float32" if device == "cpu" else "float16"
|
| 43 |
+
self.current_model = whisperx.load_model(model_options[model_choice], device, compute_type=compute_type)
|
| 44 |
+
self.current_model_name = model_choice
|
| 45 |
+
self.current_device = device
|
| 46 |
+
else:
|
| 47 |
+
print(f"Using already loaded model: {self.current_model_name} on device: {self.current_device}")
|
| 48 |
+
return self.current_model
|
| 49 |
+
|
| 50 |
+
# Validates if the given file path corresponds to a multimedia file (audio or video) by checking MIME types and specific file extensions.
|
| 51 |
+
def validate_multimedia_file(file_path):
|
| 52 |
+
file_path = os.path.normpath(file_path)
|
| 53 |
+
mime_type, _ = mimetypes.guess_type(file_path)
|
| 54 |
+
if mime_type and (mime_type.startswith('audio') or mime_type.startswith('video')):
|
| 55 |
+
return file_path
|
| 56 |
+
else:
|
| 57 |
+
if file_path.lower().endswith(('.mp3', '.mp4', '.wav', '.avi', '.mov', '.flv')):
|
| 58 |
+
return file_path
|
| 59 |
+
else:
|
| 60 |
+
raise ValueError("The uploaded file is not a multimedia file. Please upload an appropriate audio or video file.")
|
| 61 |
+
|
| 62 |
+
# Transcribes a multimedia file
|
| 63 |
+
def transcribe(file_obj, device, language, model_choice, model_manager):
|
| 64 |
+
"""
|
| 65 |
+
Transcribes a multimedia file using a specified model, handling file operations,
|
| 66 |
+
language identification, and transcription alignment, and outputs transcription in multiple formats.
|
| 67 |
+
"""
|
| 68 |
+
_, ext = os.path.splitext(file_obj.name)
|
| 69 |
+
temp_dir = os.path.join(os.getcwd(), 'Temp')
|
| 70 |
+
|
| 71 |
+
if not os.path.exists(temp_dir):
|
| 72 |
+
os.makedirs(temp_dir)
|
| 73 |
+
new_file_path = os.path.join(temp_dir, f'resource{ext}')
|
| 74 |
+
|
| 75 |
+
shutil.copy(file_obj.name, new_file_path)
|
| 76 |
+
|
| 77 |
+
model = model_manager.load_model(model_choice, device)
|
| 78 |
+
|
| 79 |
+
validated_file_path = validate_multimedia_file(new_file_path)
|
| 80 |
+
audio = whisperx.load_audio(validated_file_path)
|
| 81 |
+
|
| 82 |
+
if language == "Identify":
|
| 83 |
+
result = model.transcribe(audio, batch_size=16)
|
| 84 |
+
language_code = result["language"]
|
| 85 |
+
else:
|
| 86 |
+
language_code = language_options[language]
|
| 87 |
+
result = model.transcribe(audio, language=language_code, batch_size=16)
|
| 88 |
+
|
| 89 |
+
model_a, metadata = whisperx.load_align_model(language_code=language_code, device=device)
|
| 90 |
+
try:
|
| 91 |
+
aligned_segments = []
|
| 92 |
+
for segment in result["segments"]:
|
| 93 |
+
aligned_segment = whisperx.align([segment], model_a, metadata, audio, device, return_char_alignments=False)
|
| 94 |
+
aligned_segments.extend(aligned_segment["segments"])
|
| 95 |
+
except Exception as e:
|
| 96 |
+
print(f"Error during alignment: {e}")
|
| 97 |
+
return None
|
| 98 |
+
|
| 99 |
+
segments_output = {"segments": aligned_segments}
|
| 100 |
+
json_output = json.dumps(segments_output, ensure_ascii=False, indent=4)
|
| 101 |
+
json_file_path = download_json_interface(json_output, temp_dir)
|
| 102 |
+
txt_path = save_as_text(aligned_segments, temp_dir)
|
| 103 |
+
vtt_path = save_as_vtt(aligned_segments, temp_dir)
|
| 104 |
+
srt_path = save_as_srt(aligned_segments, temp_dir)
|
| 105 |
+
return json_file_path, txt_path, vtt_path, srt_path
|
| 106 |
+
|
| 107 |
+
# Saves the transcription text of audio segments to a file in the specified temporary directory and returns the file path.
|
| 108 |
+
def save_as_text(segments, temp_dir):
|
| 109 |
+
txt_file_path = os.path.join(temp_dir, 'transcription_output.txt')
|
| 110 |
+
with open(txt_file_path, 'w', encoding='utf-8') as txt_file:
|
| 111 |
+
for segment in segments:
|
| 112 |
+
txt_file.write(f"{segment['text'].strip()}\n")
|
| 113 |
+
return txt_file_path
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def save_as_vtt(segments, temp_dir):
|
| 117 |
+
"""
|
| 118 |
+
Saves the transcription text as a .vtt file (Web Video Text Tracks format),
|
| 119 |
+
which includes timestamps for each segment, in the specified temporary directory and returns the file path.
|
| 120 |
+
"""
|
| 121 |
+
vtt_file_path = os.path.join(temp_dir, 'transcription_output.vtt')
|
| 122 |
+
with open(vtt_file_path, 'w', encoding='utf-8') as vtt_file:
|
| 123 |
+
vtt_file.write("WEBVTT\n\n")
|
| 124 |
+
for i, segment in enumerate(segments):
|
| 125 |
+
start = segment['start']
|
| 126 |
+
end = segment['end']
|
| 127 |
+
vtt_file.write(f"{i}\n")
|
| 128 |
+
vtt_file.write(f"{format_time(start)} --> {format_time(end)}\n")
|
| 129 |
+
vtt_file.write(f"{segment['text'].strip()}\n\n")
|
| 130 |
+
return vtt_file_path
|
| 131 |
+
|
| 132 |
+
def download_json_interface(json_data, temp_dir):
|
| 133 |
+
"""
|
| 134 |
+
Reads JSON-formatted transcription data, modifies and re-saves it in a neatly
|
| 135 |
+
formatted JSON file in the specified temporary directory, and returns the file path.
|
| 136 |
+
"""
|
| 137 |
+
json_file_path = os.path.join(temp_dir, 'transcription_output.json')
|
| 138 |
+
with open(json_file_path, 'w', encoding='utf-8') as json_file:
|
| 139 |
+
json_data = json.loads(json_data)
|
| 140 |
+
for segment in json_data['segments']:
|
| 141 |
+
segment['text'] = segment['text'].strip()
|
| 142 |
+
json_data = json.dumps(json_data, ensure_ascii=False, indent=4)
|
| 143 |
+
json_file.write(json_data)
|
| 144 |
+
return json_file_path
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def save_as_srt(segments, temp_dir):
|
| 148 |
+
"""
|
| 149 |
+
Saves the transcription text as an .srt file (SubRip Subtitle format),
|
| 150 |
+
which includes numbered entries with start and end times and corresponding text for each segment,
|
| 151 |
+
in the specified temporary directory and returns the file path.
|
| 152 |
+
"""
|
| 153 |
+
srt_file_path = os.path.join(temp_dir, 'transcription_output.srt')
|
| 154 |
+
with open(srt_file_path, 'w', encoding='utf-8') as srt_file:
|
| 155 |
+
for i, segment in enumerate(segments):
|
| 156 |
+
start = segment['start']
|
| 157 |
+
end = segment['end']
|
| 158 |
+
srt_file.write(f"{i+1}\n")
|
| 159 |
+
srt_file.write(f"{format_time_srt(start)} --> {format_time_srt(end)}\n")
|
| 160 |
+
srt_file.write(f"{segment['text'].strip()}\n\n")
|
| 161 |
+
return srt_file_path
|
| 162 |
+
|
| 163 |
+
# Converts a time value in seconds to a formatted string in the "hours:minutes:seconds,milliseconds" format, used for timestamps in VTT files.
|
| 164 |
+
def format_time(time_in_seconds):
|
| 165 |
+
hours = int(time_in_seconds // 3600)
|
| 166 |
+
minutes = int((time_in_seconds % 3600) // 60)
|
| 167 |
+
seconds = time_in_seconds % 60
|
| 168 |
+
return f"{hours:02}:{minutes:02}:{seconds:06.3f}"
|
| 169 |
+
|
| 170 |
+
# Converts a time value in seconds to a formatted string suitable for SRT files, specifically in the "hours:minutes:seconds,milliseconds" format.
|
| 171 |
+
def format_time_srt(time_in_seconds):
|
| 172 |
+
hours = int(time_in_seconds // 3600)
|
| 173 |
+
minutes = int((time_in_seconds % 3600) // 60)
|
| 174 |
+
seconds = int(time_in_seconds % 60)
|
| 175 |
+
milliseconds = int((time_in_seconds - int(time_in_seconds)) * 1000)
|
| 176 |
return f"{hours:02}:{minutes:02}:{seconds:02},{milliseconds:03}"
|