Spaces:
Sleeping
Sleeping
import logging | |
import os.path | |
import pickle | |
from pathlib import Path | |
from typing import Tuple, Union | |
import numpy as np | |
from cttpunctuator.src.utils.OrtInferSession import ONNXRuntimeError, OrtInferSession | |
from cttpunctuator.src.utils.text_post_process import ( | |
TokenIDConverter, | |
code_mix_split_words, | |
split_to_mini_sentence, | |
) | |
class CT_Transformer: | |
""" | |
Author: Speech Lab, Alibaba Group, China | |
CT-Transformer: Controllable time-delay transformer | |
for real-time punctuation prediction and disfluency detection | |
https://arxiv.org/pdf/2003.01309.pdf | |
""" | |
def __init__( | |
self, | |
model_dir: Union[str, Path] = None, | |
batch_size: int = 1, | |
device_id: Union[str, int] = "-1", | |
quantize: bool = False, | |
intra_op_num_threads: int = 4, | |
): | |
model_dir = model_dir or os.path.join(os.path.dirname(__file__), "onnx") | |
if model_dir is None or not Path(model_dir).exists(): | |
raise FileNotFoundError(f"{model_dir} does not exist.") | |
model_file = os.path.join(model_dir, "punc.onnx") | |
if quantize: | |
model_file = os.path.join(model_dir, "model_quant.onnx") | |
config_file = os.path.join(model_dir, "punc.bin") | |
with open(config_file, "rb") as file: | |
config = pickle.load(file) | |
self.converter = TokenIDConverter(config["token_list"]) | |
self.ort_infer = OrtInferSession( | |
model_file, device_id, intra_op_num_threads=intra_op_num_threads | |
) | |
self.batch_size = 1 | |
self.punc_list = config["punc_list"] | |
self.period = 0 | |
for i in range(len(self.punc_list)): | |
if self.punc_list[i] == ",": | |
self.punc_list[i] = "," | |
elif self.punc_list[i] == "?": | |
self.punc_list[i] = "?" | |
elif self.punc_list[i] == "。": | |
self.period = i | |
def __call__(self, text: Union[list, str], split_size=20): | |
split_text = code_mix_split_words(text) | |
split_text_id = self.converter.tokens2ids(split_text) | |
mini_sentences = split_to_mini_sentence(split_text, split_size) | |
mini_sentences_id = split_to_mini_sentence(split_text_id, split_size) | |
assert len(mini_sentences) == len(mini_sentences_id) | |
cache_sent = [] | |
cache_sent_id = [] | |
new_mini_sentence = "" | |
new_mini_sentence_punc = [] | |
cache_pop_trigger_limit = 200 | |
for mini_sentence_i in range(len(mini_sentences)): | |
mini_sentence = mini_sentences[mini_sentence_i] | |
mini_sentence_id = mini_sentences_id[mini_sentence_i] | |
mini_sentence = cache_sent + mini_sentence | |
mini_sentence_id = np.array(cache_sent_id + mini_sentence_id, dtype="int64") | |
text_lengths = np.array([len(mini_sentence)], dtype="int32") | |
data = { | |
"text": mini_sentence_id[None, :], | |
"text_lengths": text_lengths, | |
} | |
try: | |
outputs = self.infer(data["text"], data["text_lengths"]) | |
y = outputs[0] | |
punctuations = np.argmax(y, axis=-1)[0] | |
assert punctuations.size == len(mini_sentence) | |
except ONNXRuntimeError as e: | |
logging.exception(e) | |
# Search for the last Period/QuestionMark as cache | |
if mini_sentence_i < len(mini_sentences) - 1: | |
sentenceEnd = -1 | |
last_comma_index = -1 | |
for i in range(len(punctuations) - 2, 1, -1): | |
if ( | |
self.punc_list[punctuations[i]] == "。" | |
or self.punc_list[punctuations[i]] == "?" | |
): | |
sentenceEnd = i | |
break | |
if last_comma_index < 0 and self.punc_list[punctuations[i]] == ",": | |
last_comma_index = i | |
if ( | |
sentenceEnd < 0 | |
and len(mini_sentence) > cache_pop_trigger_limit | |
and last_comma_index >= 0 | |
): | |
# The sentence it too long, cut off at a comma. | |
sentenceEnd = last_comma_index | |
punctuations[sentenceEnd] = self.period | |
cache_sent = mini_sentence[sentenceEnd + 1 :] | |
cache_sent_id = mini_sentence_id[sentenceEnd + 1 :].tolist() | |
mini_sentence = mini_sentence[0 : sentenceEnd + 1] | |
punctuations = punctuations[0 : sentenceEnd + 1] | |
new_mini_sentence_punc += [int(x) for x in punctuations] | |
words_with_punc = [] | |
for i in range(len(mini_sentence)): | |
if i > 0: | |
if ( | |
len(mini_sentence[i][0].encode()) == 1 | |
and len(mini_sentence[i - 1][0].encode()) == 1 | |
): | |
mini_sentence[i] = " " + mini_sentence[i] | |
words_with_punc.append(mini_sentence[i]) | |
if self.punc_list[punctuations[i]] != "_": | |
words_with_punc.append(self.punc_list[punctuations[i]]) | |
new_mini_sentence += "".join(words_with_punc) | |
# Add Period for the end of the sentence | |
new_mini_sentence_out = new_mini_sentence | |
new_mini_sentence_punc_out = new_mini_sentence_punc | |
if mini_sentence_i == len(mini_sentences) - 1: | |
if new_mini_sentence[-1] == "," or new_mini_sentence[-1] == "、": | |
new_mini_sentence_out = new_mini_sentence[:-1] + "。" | |
new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [ | |
self.period | |
] | |
elif new_mini_sentence[-1] != "。" and new_mini_sentence[-1] != "?": | |
new_mini_sentence_out = new_mini_sentence + "。" | |
new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [ | |
self.period | |
] | |
return new_mini_sentence_out, new_mini_sentence_punc_out | |
def infer( | |
self, feats: np.ndarray, feats_len: np.ndarray | |
) -> Tuple[np.ndarray, np.ndarray]: | |
outputs = self.ort_infer([feats, feats_len]) | |
return outputs | |
class CT_Transformer_VadRealtime(CT_Transformer): | |
""" | |
Author: Speech Lab, Alibaba Group, China | |
CT-Transformer: Controllable time-delay transformer for | |
real-time punctuation prediction and disfluency detection | |
https://arxiv.org/pdf/2003.01309.pdf | |
""" | |
def __init__( | |
self, | |
model_dir: Union[str, Path] = None, | |
batch_size: int = 1, | |
device_id: Union[str, int] = "-1", | |
quantize: bool = False, | |
intra_op_num_threads: int = 4, | |
): | |
super(CT_Transformer_VadRealtime, self).__init__( | |
model_dir, batch_size, device_id, quantize, intra_op_num_threads | |
) | |
def __call__(self, text: str, param_dict: map, split_size=20): | |
cache_key = "cache" | |
assert cache_key in param_dict | |
cache = param_dict[cache_key] | |
if cache is not None and len(cache) > 0: | |
precache = "".join(cache) | |
else: | |
precache = "" | |
cache = [] | |
full_text = precache + text | |
split_text = code_mix_split_words(full_text) | |
split_text_id = self.converter.tokens2ids(split_text) | |
mini_sentences = split_to_mini_sentence(split_text, split_size) | |
mini_sentences_id = split_to_mini_sentence(split_text_id, split_size) | |
new_mini_sentence_punc = [] | |
assert len(mini_sentences) == len(mini_sentences_id) | |
cache_sent = [] | |
cache_sent_id = np.array([], dtype="int32") | |
sentence_punc_list = [] | |
sentence_words_list = [] | |
cache_pop_trigger_limit = 200 | |
skip_num = 0 | |
for mini_sentence_i in range(len(mini_sentences)): | |
mini_sentence = mini_sentences[mini_sentence_i] | |
mini_sentence_id = mini_sentences_id[mini_sentence_i] | |
mini_sentence = cache_sent + mini_sentence | |
mini_sentence_id = np.concatenate((cache_sent_id, mini_sentence_id), axis=0) | |
text_length = len(mini_sentence_id) | |
data = { | |
"input": np.array(mini_sentence_id[None, :], dtype="int64"), | |
"text_lengths": np.array([text_length], dtype="int32"), | |
"vad_mask": self.vad_mask(text_length, len(cache))[ | |
None, None, :, : | |
].astype(np.float32), | |
"sub_masks": np.tril( | |
np.ones((text_length, text_length), dtype=np.float32) | |
)[None, None, :, :].astype(np.float32), | |
} | |
try: | |
outputs = self.infer( | |
data["input"], | |
data["text_lengths"], | |
data["vad_mask"], | |
data["sub_masks"], | |
) | |
y = outputs[0] | |
punctuations = np.argmax(y, axis=-1)[0] | |
assert punctuations.size == len(mini_sentence) | |
except ONNXRuntimeError as e: | |
logging.exception(e) | |
# Search for the last Period/QuestionMark as cache | |
if mini_sentence_i < len(mini_sentences) - 1: | |
sentenceEnd = -1 | |
last_comma_index = -1 | |
for i in range(len(punctuations) - 2, 1, -1): | |
if ( | |
self.punc_list[punctuations[i]] == "。" | |
or self.punc_list[punctuations[i]] == "?" | |
): | |
sentenceEnd = i | |
break | |
if last_comma_index < 0 and self.punc_list[punctuations[i]] == ",": | |
last_comma_index = i | |
if ( | |
sentenceEnd < 0 | |
and len(mini_sentence) > cache_pop_trigger_limit | |
and last_comma_index >= 0 | |
): | |
# The sentence it too long, cut off at a comma. | |
sentenceEnd = last_comma_index | |
punctuations[sentenceEnd] = self.period | |
cache_sent = mini_sentence[sentenceEnd + 1 :] | |
cache_sent_id = mini_sentence_id[sentenceEnd + 1 :] | |
mini_sentence = mini_sentence[0 : sentenceEnd + 1] | |
punctuations = punctuations[0 : sentenceEnd + 1] | |
punctuations_np = [int(x) for x in punctuations] | |
new_mini_sentence_punc += punctuations_np | |
sentence_punc_list += [self.punc_list[int(x)] for x in punctuations_np] | |
sentence_words_list += mini_sentence | |
assert len(sentence_punc_list) == len(sentence_words_list) | |
words_with_punc = [] | |
sentence_punc_list_out = [] | |
for i in range(0, len(sentence_words_list)): | |
if i > 0: | |
if ( | |
len(sentence_words_list[i][0].encode()) == 1 | |
and len(sentence_words_list[i - 1][-1].encode()) == 1 | |
): | |
sentence_words_list[i] = " " + sentence_words_list[i] | |
if skip_num < len(cache): | |
skip_num += 1 | |
else: | |
words_with_punc.append(sentence_words_list[i]) | |
if skip_num >= len(cache): | |
sentence_punc_list_out.append(sentence_punc_list[i]) | |
if sentence_punc_list[i] != "_": | |
words_with_punc.append(sentence_punc_list[i]) | |
sentence_out = "".join(words_with_punc) | |
sentenceEnd = -1 | |
for i in range(len(sentence_punc_list) - 2, 1, -1): | |
if sentence_punc_list[i] == "。" or sentence_punc_list[i] == "?": | |
sentenceEnd = i | |
break | |
cache_out = sentence_words_list[sentenceEnd + 1 :] | |
if sentence_out[-1] in self.punc_list: | |
sentence_out = sentence_out[:-1] | |
sentence_punc_list_out[-1] = "_" | |
param_dict[cache_key] = cache_out | |
return sentence_out, sentence_punc_list_out, cache_out | |
def vad_mask(self, size, vad_pos, dtype=np.bool_): | |
"""Create mask for decoder self-attention. | |
:param int size: size of mask | |
:param int vad_pos: index of vad index | |
:param torch.dtype dtype: result dtype | |
:rtype: torch.Tensor (B, Lmax, Lmax) | |
""" | |
ret = np.ones((size, size), dtype=dtype) | |
if vad_pos <= 0 or vad_pos >= size: | |
return ret | |
sub_corner = np.zeros((vad_pos - 1, size - vad_pos), dtype=dtype) | |
ret[0 : vad_pos - 1, vad_pos:] = sub_corner | |
return ret | |
def infer( | |
self, | |
feats: np.ndarray, | |
feats_len: np.ndarray, | |
vad_mask: np.ndarray, | |
sub_masks: np.ndarray, | |
) -> Tuple[np.ndarray, np.ndarray]: | |
outputs = self.ort_infer([feats, feats_len, vad_mask, sub_masks]) | |
return outputs | |