File size: 4,655 Bytes
b9e018b e651999 68e1313 b9e018b e651999 03b6d75 68e1313 03b6d75 68e1313 e651999 03b6d75 68e1313 e651999 68e1313 b9e018b e651999 68e1313 03b6d75 68e1313 03b6d75 68e1313 e651999 2d2df69 68e1313 2d2df69 68e1313 e651999 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
import os
import gradio as gr
from Plan.AiLLM import llm_recognition
from Plan.pytesseractOCR import ocr_recognition
from Preprocess.preprocessImg import (
preprocess_image001, preprocess_image002, preprocess_image003,
preprocess_image004, preprocess_image005
)
# 取得所有語言清單
languages = os.popen('tesseract --list-langs').read().split('\n')[1:-1]
def preprocess_and_ocr(image, valid_type, language):
# 方案一
pre_img_001 = preprocess_image001(image)
ocr_result_001 = ocr_recognition(pre_img_001, valid_type, language)
# 方案二
pre_img_002 = preprocess_image002(image)
ocr_result_002 = ocr_recognition(pre_img_002, valid_type, language)
# 方案三
pre_img_003 = preprocess_image003(image)
ocr_result_003 = ocr_recognition(pre_img_003, valid_type, language)
# 方案四
pre_img_004 = preprocess_image004(image)
ocr_result_004 = ocr_recognition(pre_img_004, valid_type, language)
# 方案五
pre_img_005 = preprocess_image005(image)
ocr_result_005 = ocr_recognition(pre_img_005, valid_type, language)
return (pre_img_001, pre_img_002, pre_img_003, pre_img_004, pre_img_005,
ocr_result_001, ocr_result_002, ocr_result_003, ocr_result_004, ocr_result_005)
def preprocess_and_llm(image, valid_type, language):
# 方案一
pre_img_001 = preprocess_image001(image)
llm_result_001 = llm_recognition(pre_img_001, valid_type, language)
# 方案二
pre_img_002 = preprocess_image002(image)
llm_result_002 = llm_recognition(pre_img_002, valid_type, language)
# 方案三
pre_img_003 = preprocess_image003(image)
llm_result_003 = llm_recognition(pre_img_003, valid_type, language)
# 方案四
pre_img_004 = preprocess_image004(image)
llm_result_004 = llm_recognition(pre_img_004, valid_type, language)
# 方案五
pre_img_005 = preprocess_image005(image)
llm_result_005 = llm_recognition(pre_img_005, valid_type, language)
return (pre_img_001, pre_img_002, pre_img_003, pre_img_004, pre_img_005,
llm_result_001, llm_result_002, llm_result_003, llm_result_004, llm_result_005)
with gr.Blocks() as demo:
with gr.Row():
image_input = gr.Image(type="pil", label="上傳圖片")
validation_type = gr.Dropdown(choices=["身分證正面", "身分證反面"], label="驗證類別")
language_dropdown = gr.Dropdown(choices=languages, value="chi_tra", label="語言")
with gr.Row():
ocr_button = gr.Button("使用 OCR")
llm_button = gr.Button("使用 AI LLM")
with gr.Row():
preprocess_output_001 = gr.Image(type="pil", label="預處理後的圖片-方案一")
ocr_output_001 = gr.JSON(label="OCR-001-解析結果")
llm_output_001 = gr.JSON(label="AiLLM-001-解析結果")
with gr.Row():
preprocess_output_002 = gr.Image(type="pil", label="預處理後的圖片-方案二")
ocr_output_002 = gr.JSON(label="OCR-002-解析結果")
llm_output_002 = gr.JSON(label="AiLLM-002-解析結果")
with gr.Row():
preprocess_output_003 = gr.Image(type="pil", label="預處理後的圖片-方案三")
ocr_output_003 = gr.JSON(label="OCR-003-解析結果")
llm_output_003 = gr.JSON(label="AiLLM-003-解析結果")
with gr.Row():
preprocess_output_004 = gr.Image(type="pil", label="預處理後的圖片-方案四")
ocr_output_004 = gr.JSON(label="OCR-004-解析結果")
llm_output_004 = gr.JSON(label="AiLLM-004-解析結果")
with gr.Row():
preprocess_output_005 = gr.Image(type="pil", label="預處理後的圖片-方案五")
ocr_output_005 = gr.JSON(label="OCR-005-解析結果")
llm_output_005 = gr.JSON(label="AiLLM-005-解析結果")
ocr_button.click(preprocess_and_ocr, inputs=[image_input, validation_type, language_dropdown],
outputs=[
preprocess_output_001, preprocess_output_002, preprocess_output_003, preprocess_output_004,
preprocess_output_005,
ocr_output_001, ocr_output_002, ocr_output_003, ocr_output_004, ocr_output_005
])
llm_button.click(preprocess_and_llm, inputs=[image_input, validation_type, language_dropdown],
outputs=[
preprocess_output_001, preprocess_output_002, preprocess_output_003, preprocess_output_004,
preprocess_output_005,
llm_output_001, llm_output_002, llm_output_003, llm_output_004, llm_output_005
])
demo.launch(share=False)
|