Create vtoonify/train_vtoonify_t.py
Browse files- vtoonify/train_vtoonify_t.py +432 -0
vtoonify/train_vtoonify_t.py
ADDED
|
@@ -0,0 +1,432 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
#os.environ['CUDA_VISIBLE_DEVICES'] = "0"
|
| 3 |
+
import argparse
|
| 4 |
+
import math
|
| 5 |
+
import random
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch
|
| 9 |
+
from torch import nn, optim
|
| 10 |
+
from torch.nn import functional as F
|
| 11 |
+
from torch.utils import data
|
| 12 |
+
import torch.distributed as dist
|
| 13 |
+
from torchvision import transforms, utils
|
| 14 |
+
from tqdm import tqdm
|
| 15 |
+
from PIL import Image
|
| 16 |
+
from util import *
|
| 17 |
+
from model.stylegan import lpips
|
| 18 |
+
from model.stylegan.model import Generator, Downsample
|
| 19 |
+
from model.vtoonify import VToonify, ConditionalDiscriminator
|
| 20 |
+
from model.bisenet.model import BiSeNet
|
| 21 |
+
from model.simple_augment import random_apply_affine
|
| 22 |
+
from model.stylegan.distributed import (
|
| 23 |
+
get_rank,
|
| 24 |
+
synchronize,
|
| 25 |
+
reduce_loss_dict,
|
| 26 |
+
reduce_sum,
|
| 27 |
+
get_world_size,
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
# In the paper, --weight for each style is set as follows,
|
| 31 |
+
# cartoon: default
|
| 32 |
+
# caricature: default
|
| 33 |
+
# pixar: 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
|
| 34 |
+
# comic: 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 1 1 1 1 1 1 1 1 1 1
|
| 35 |
+
# arcane: 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 1 1 1 1 1 1 1 1 1 1
|
| 36 |
+
|
| 37 |
+
class TrainOptions():
|
| 38 |
+
def __init__(self):
|
| 39 |
+
|
| 40 |
+
self.parser = argparse.ArgumentParser(description="Train VToonify-T")
|
| 41 |
+
self.parser.add_argument("--iter", type=int, default=2000, help="total training iterations")
|
| 42 |
+
self.parser.add_argument("--batch", type=int, default=8, help="batch sizes for each gpus")
|
| 43 |
+
self.parser.add_argument("--lr", type=float, default=0.0001, help="learning rate")
|
| 44 |
+
self.parser.add_argument("--local_rank", type=int, default=0, help="local rank for distributed training")
|
| 45 |
+
self.parser.add_argument("--start_iter", type=int, default=0, help="start iteration")
|
| 46 |
+
self.parser.add_argument("--save_every", type=int, default=30000, help="interval of saving a checkpoint")
|
| 47 |
+
self.parser.add_argument("--save_begin", type=int, default=30000, help="when to start saving a checkpoint")
|
| 48 |
+
self.parser.add_argument("--log_every", type=int, default=200, help="interval of saving an intermediate image result")
|
| 49 |
+
|
| 50 |
+
self.parser.add_argument("--adv_loss", type=float, default=0.01, help="the weight of adv loss")
|
| 51 |
+
self.parser.add_argument("--grec_loss", type=float, default=0.1, help="the weight of mse recontruction loss")
|
| 52 |
+
self.parser.add_argument("--perc_loss", type=float, default=0.01, help="the weight of perceptual loss")
|
| 53 |
+
self.parser.add_argument("--tmp_loss", type=float, default=1.0, help="the weight of temporal consistency loss")
|
| 54 |
+
|
| 55 |
+
self.parser.add_argument("--encoder_path", type=str, default=None, help="path to the pretrained encoder model")
|
| 56 |
+
self.parser.add_argument("--direction_path", type=str, default='./checkpoint/directions.npy', help="path to the editing direction latents")
|
| 57 |
+
self.parser.add_argument("--stylegan_path", type=str, default='./checkpoint/stylegan2-ffhq-config-f.pt', help="path to the stylegan model")
|
| 58 |
+
self.parser.add_argument("--finetunegan_path", type=str, default='./checkpoint/cartoon/finetune-000600.pt', help="path to the finetuned stylegan model")
|
| 59 |
+
self.parser.add_argument("--weight", type=float, nargs=18, default=[1]*9+[0]*9, help="the weight for blending two models")
|
| 60 |
+
self.parser.add_argument("--faceparsing_path", type=str, default='./checkpoint/faceparsing.pth', help="path of the face parsing model")
|
| 61 |
+
self.parser.add_argument("--style_encoder_path", type=str, default='./checkpoint/encoder.pt', help="path of the style encoder")
|
| 62 |
+
|
| 63 |
+
self.parser.add_argument("--name", type=str, default='vtoonify_t_cartoon', help="saved model name")
|
| 64 |
+
self.parser.add_argument("--pretrain", action="store_true", help="if true, only pretrain the encoder")
|
| 65 |
+
|
| 66 |
+
def parse(self):
|
| 67 |
+
self.opt = self.parser.parse_args()
|
| 68 |
+
if self.opt.encoder_path is None:
|
| 69 |
+
self.opt.encoder_path = os.path.join('./checkpoint/', self.opt.name, 'pretrain.pt')
|
| 70 |
+
args = vars(self.opt)
|
| 71 |
+
if self.opt.local_rank == 0:
|
| 72 |
+
print('Load options')
|
| 73 |
+
for name, value in sorted(args.items()):
|
| 74 |
+
print('%s: %s' % (str(name), str(value)))
|
| 75 |
+
return self.opt
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
# pretrain E of vtoonify.
|
| 79 |
+
# We train E so that its the last-layer feature matches the original 8-th-layer input feature of G1
|
| 80 |
+
# See Model initialization in Sec. 4.1.2 for the detail
|
| 81 |
+
def pretrain(args, generator, g_optim, g_ema, parsingpredictor, down, directions, basemodel, device):
|
| 82 |
+
pbar = range(args.iter)
|
| 83 |
+
|
| 84 |
+
if get_rank() == 0:
|
| 85 |
+
pbar = tqdm(pbar, initial=args.start_iter, dynamic_ncols=True, smoothing=0.01)
|
| 86 |
+
|
| 87 |
+
recon_loss = torch.tensor(0.0, device=device)
|
| 88 |
+
loss_dict = {}
|
| 89 |
+
|
| 90 |
+
if args.distributed:
|
| 91 |
+
g_module = generator.module
|
| 92 |
+
else:
|
| 93 |
+
g_module = generator
|
| 94 |
+
|
| 95 |
+
accum = 0.5 ** (32 / (10 * 1000))
|
| 96 |
+
|
| 97 |
+
requires_grad(g_module.encoder, True)
|
| 98 |
+
|
| 99 |
+
for idx in pbar:
|
| 100 |
+
i = idx + args.start_iter
|
| 101 |
+
|
| 102 |
+
if i > args.iter:
|
| 103 |
+
print("Done!")
|
| 104 |
+
break
|
| 105 |
+
|
| 106 |
+
with torch.no_grad():
|
| 107 |
+
# during pretraining, no geometric transformations are applied.
|
| 108 |
+
noise_sample = torch.randn(args.batch, 512).cuda()
|
| 109 |
+
ws_ = basemodel.style(noise_sample).unsqueeze(1).repeat(1,18,1) # random w
|
| 110 |
+
ws_[:, 3:7] += directions[torch.randint(0, directions.shape[0], (args.batch,)), 3:7] # w''=w'=w+n
|
| 111 |
+
img_gen, _ = basemodel([ws_], input_is_latent=True, truncation=0.5, truncation_latent=0) # image part of x'
|
| 112 |
+
img_gen = torch.clamp(img_gen, -1, 1).detach()
|
| 113 |
+
img_gen512 = down(img_gen.detach())
|
| 114 |
+
img_gen256 = down(img_gen512.detach()) # image part of x'_down
|
| 115 |
+
mask512 = parsingpredictor(2*torch.clamp(img_gen512, -1, 1))[0]
|
| 116 |
+
real_input = torch.cat((img_gen256, down(mask512)/16.0), dim=1).detach() # x'_down
|
| 117 |
+
# f_G1^(8)(w'')
|
| 118 |
+
real_feat, real_skip = g_ema.generator([ws_], input_is_latent=True, return_feature_ind = 6, truncation=0.5, truncation_latent=0)
|
| 119 |
+
real_feat = real_feat.detach()
|
| 120 |
+
real_skip = real_skip.detach()
|
| 121 |
+
|
| 122 |
+
# f_E^(last)(x'_down)
|
| 123 |
+
fake_feat, fake_skip = generator(real_input, style=None, return_feat=True)
|
| 124 |
+
|
| 125 |
+
# L_E in Eq.(1)
|
| 126 |
+
recon_loss = F.mse_loss(fake_feat, real_feat) + F.mse_loss(fake_skip, real_skip)
|
| 127 |
+
|
| 128 |
+
loss_dict["emse"] = recon_loss
|
| 129 |
+
|
| 130 |
+
generator.zero_grad()
|
| 131 |
+
recon_loss.backward()
|
| 132 |
+
g_optim.step()
|
| 133 |
+
|
| 134 |
+
accumulate(g_ema.encoder, g_module.encoder, accum)
|
| 135 |
+
|
| 136 |
+
loss_reduced = reduce_loss_dict(loss_dict)
|
| 137 |
+
|
| 138 |
+
emse_loss_val = loss_reduced["emse"].mean().item()
|
| 139 |
+
|
| 140 |
+
if get_rank() == 0:
|
| 141 |
+
pbar.set_description(
|
| 142 |
+
(
|
| 143 |
+
f"iter: {i:d}; emse: {emse_loss_val:.3f}"
|
| 144 |
+
)
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
if ((i+1) >= args.save_begin and (i+1) % args.save_every == 0) or (i+1) == args.iter:
|
| 148 |
+
if (i+1) == args.iter:
|
| 149 |
+
savename = f"checkpoint/%s/pretrain.pt"%(args.name)
|
| 150 |
+
else:
|
| 151 |
+
savename = f"checkpoint/%s/pretrain-%05d.pt"%(args.name, i+1)
|
| 152 |
+
torch.save(
|
| 153 |
+
{
|
| 154 |
+
#"g": g_module.encoder.state_dict(),
|
| 155 |
+
"g_ema": g_ema.encoder.state_dict(),
|
| 156 |
+
},
|
| 157 |
+
savename,
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
# generate paired data and train vtoonify, see Sec. 4.1.2 for the detail
|
| 162 |
+
def train(args, generator, discriminator, g_optim, d_optim, g_ema, percept, parsingpredictor, down, pspencoder, directions, basemodel, device):
|
| 163 |
+
pbar = range(args.iter)
|
| 164 |
+
|
| 165 |
+
if get_rank() == 0:
|
| 166 |
+
pbar = tqdm(pbar, initial=args.start_iter, smoothing=0.01, ncols=120, dynamic_ncols=False)
|
| 167 |
+
|
| 168 |
+
d_loss = torch.tensor(0.0, device=device)
|
| 169 |
+
g_loss = torch.tensor(0.0, device=device)
|
| 170 |
+
grec_loss = torch.tensor(0.0, device=device)
|
| 171 |
+
gfeat_loss = torch.tensor(0.0, device=device)
|
| 172 |
+
temporal_loss = torch.tensor(0.0, device=device)
|
| 173 |
+
loss_dict = {}
|
| 174 |
+
|
| 175 |
+
if args.distributed:
|
| 176 |
+
g_module = generator.module
|
| 177 |
+
d_module = discriminator.module
|
| 178 |
+
|
| 179 |
+
else:
|
| 180 |
+
g_module = generator
|
| 181 |
+
d_module = discriminator
|
| 182 |
+
|
| 183 |
+
accum = 0.5 ** (32 / (10 * 1000))
|
| 184 |
+
|
| 185 |
+
for idx in pbar:
|
| 186 |
+
i = idx + args.start_iter
|
| 187 |
+
|
| 188 |
+
if i > args.iter:
|
| 189 |
+
print("Done!")
|
| 190 |
+
break
|
| 191 |
+
|
| 192 |
+
###### This part is for data generation. Generate pair (x, y, w'') as in Fig. 5 of the paper
|
| 193 |
+
with torch.no_grad():
|
| 194 |
+
noise_sample = torch.randn(args.batch, 512).cuda()
|
| 195 |
+
wc = basemodel.style(noise_sample).unsqueeze(1).repeat(1,18,1) # random w
|
| 196 |
+
wc[:, 3:7] += directions[torch.randint(0, directions.shape[0], (args.batch,)), 3:7] # w'=w+n
|
| 197 |
+
wc = wc.detach()
|
| 198 |
+
xc, _ = basemodel([wc], input_is_latent=True, truncation=0.5, truncation_latent=0)
|
| 199 |
+
xc = torch.clamp(xc, -1, 1).detach() # x'
|
| 200 |
+
xl = pspencoder(F.adaptive_avg_pool2d(xc, 256))
|
| 201 |
+
xl = basemodel.style(xl.reshape(xl.shape[0]*xl.shape[1], xl.shape[2])).reshape(xl.shape) # E_s(x'_down)
|
| 202 |
+
xl = torch.cat((wc[:,0:7]*0.5, xl[:,7:18]), dim=1).detach() # w'' = concatenate w' and E_s(x'_down)
|
| 203 |
+
xs, _ = g_ema.generator([xl], input_is_latent=True)
|
| 204 |
+
xs = torch.clamp(xs, -1, 1).detach() # y'
|
| 205 |
+
# during training, random geometric transformations are applied.
|
| 206 |
+
imgs, _ = random_apply_affine(torch.cat((xc.detach(),xs), dim=1), 0.2, None)
|
| 207 |
+
real_input1024 = imgs[:,0:3].detach() # image part of x
|
| 208 |
+
real_input512 = down(real_input1024).detach()
|
| 209 |
+
real_input256 = down(real_input512).detach()
|
| 210 |
+
mask512 = parsingpredictor(2*real_input512)[0]
|
| 211 |
+
mask256 = down(mask512).detach()
|
| 212 |
+
mask = F.adaptive_avg_pool2d(mask512, 1024).detach() # parsing part of x
|
| 213 |
+
real_output = imgs[:,3:].detach() # y
|
| 214 |
+
real_input = torch.cat((real_input256, mask256/16.0), dim=1) # x_down
|
| 215 |
+
# for log, sample a fixed input-output pair (x_down, y, w'')
|
| 216 |
+
if idx == 0 or i == 0:
|
| 217 |
+
samplein = real_input.clone().detach()
|
| 218 |
+
sampleout = real_output.clone().detach()
|
| 219 |
+
samplexl = xl.clone().detach()
|
| 220 |
+
|
| 221 |
+
###### This part is for training discriminator
|
| 222 |
+
|
| 223 |
+
requires_grad(g_module.encoder, False)
|
| 224 |
+
requires_grad(g_module.fusion_out, False)
|
| 225 |
+
requires_grad(g_module.fusion_skip, False)
|
| 226 |
+
requires_grad(discriminator, True)
|
| 227 |
+
|
| 228 |
+
fake_output = generator(real_input, xl)
|
| 229 |
+
fake_pred = discriminator(F.adaptive_avg_pool2d(fake_output, 256))
|
| 230 |
+
real_pred = discriminator(F.adaptive_avg_pool2d(real_output, 256))
|
| 231 |
+
|
| 232 |
+
# L_adv in Eq.(3)
|
| 233 |
+
d_loss = d_logistic_loss(real_pred, fake_pred) * args.adv_loss
|
| 234 |
+
loss_dict["d"] = d_loss
|
| 235 |
+
|
| 236 |
+
discriminator.zero_grad()
|
| 237 |
+
d_loss.backward()
|
| 238 |
+
d_optim.step()
|
| 239 |
+
|
| 240 |
+
###### This part is for training generator (encoder and fusion modules)
|
| 241 |
+
|
| 242 |
+
requires_grad(g_module.encoder, True)
|
| 243 |
+
requires_grad(g_module.fusion_out, True)
|
| 244 |
+
requires_grad(g_module.fusion_skip, True)
|
| 245 |
+
requires_grad(discriminator, False)
|
| 246 |
+
|
| 247 |
+
fake_output = generator(real_input, xl)
|
| 248 |
+
fake_pred = discriminator(F.adaptive_avg_pool2d(fake_output, 256))
|
| 249 |
+
# L_adv in Eq.(3)
|
| 250 |
+
g_loss = g_nonsaturating_loss(fake_pred) * args.adv_loss
|
| 251 |
+
# L_rec in Eq.(2)
|
| 252 |
+
grec_loss = F.mse_loss(fake_output, real_output) * args.grec_loss
|
| 253 |
+
gfeat_loss = percept(F.adaptive_avg_pool2d(fake_output, 512), # 1024 will out of memory
|
| 254 |
+
F.adaptive_avg_pool2d(real_output, 512)).sum() * args.perc_loss # 256 will get blurry output
|
| 255 |
+
|
| 256 |
+
loss_dict["g"] = g_loss
|
| 257 |
+
loss_dict["gr"] = grec_loss
|
| 258 |
+
loss_dict["gf"] = gfeat_loss
|
| 259 |
+
|
| 260 |
+
w = random.randint(0,1024-896)
|
| 261 |
+
h = random.randint(0,1024-896)
|
| 262 |
+
crop_input = torch.cat((real_input1024[:,:,w:w+896,h:h+896], mask[:,:,w:w+896,h:h+896]/16.0), dim=1).detach()
|
| 263 |
+
crop_input = down(down(crop_input))
|
| 264 |
+
crop_fake_output = fake_output[:,:,w:w+896,h:h+896]
|
| 265 |
+
fake_crop_output = generator(crop_input, xl)
|
| 266 |
+
# L_tmp in Eq.(4), gradually increase the weight of L_tmp
|
| 267 |
+
temporal_loss = ((fake_crop_output-crop_fake_output)**2).mean() * max(idx/(args.iter/2.0)-1, 0) * args.tmp_loss
|
| 268 |
+
loss_dict["tp"] = temporal_loss
|
| 269 |
+
|
| 270 |
+
generator.zero_grad()
|
| 271 |
+
(g_loss + grec_loss + gfeat_loss + temporal_loss).backward()
|
| 272 |
+
g_optim.step()
|
| 273 |
+
|
| 274 |
+
accumulate(g_ema.encoder, g_module.encoder, accum)
|
| 275 |
+
accumulate(g_ema.fusion_out, g_module.fusion_out, accum)
|
| 276 |
+
accumulate(g_ema.fusion_skip, g_module.fusion_skip, accum)
|
| 277 |
+
|
| 278 |
+
loss_reduced = reduce_loss_dict(loss_dict)
|
| 279 |
+
|
| 280 |
+
d_loss_val = loss_reduced["d"].mean().item()
|
| 281 |
+
g_loss_val = loss_reduced["g"].mean().item()
|
| 282 |
+
gr_loss_val = loss_reduced["gr"].mean().item()
|
| 283 |
+
gf_loss_val = loss_reduced["gf"].mean().item()
|
| 284 |
+
tmp_loss_val = loss_reduced["tp"].mean().item()
|
| 285 |
+
|
| 286 |
+
if get_rank() == 0:
|
| 287 |
+
pbar.set_description(
|
| 288 |
+
(
|
| 289 |
+
f"iter: {i:d}; advd: {d_loss_val:.3f}; advg: {g_loss_val:.3f}; mse: {gr_loss_val:.3f}; "
|
| 290 |
+
f"perc: {gf_loss_val:.3f}; tmp: {tmp_loss_val:.3f}"
|
| 291 |
+
)
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
if i % args.log_every == 0 or (i+1) == args.iter:
|
| 295 |
+
with torch.no_grad():
|
| 296 |
+
g_ema.eval()
|
| 297 |
+
sample = g_ema(samplein, samplexl)
|
| 298 |
+
sample = F.interpolate(torch.cat((sampleout, sample), dim=0), 256)
|
| 299 |
+
utils.save_image(
|
| 300 |
+
sample,
|
| 301 |
+
f"log/%s/%05d.jpg"%(args.name, i),
|
| 302 |
+
nrow=int(args.batch),
|
| 303 |
+
normalize=True,
|
| 304 |
+
range=(-1, 1),
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
if ((i+1) >= args.save_begin and (i+1) % args.save_every == 0) or (i+1) == args.iter:
|
| 308 |
+
if (i+1) == args.iter:
|
| 309 |
+
savename = f"checkpoint/%s/vtoonify.pt"%(args.name)
|
| 310 |
+
else:
|
| 311 |
+
savename = f"checkpoint/%s/vtoonify_%05d.pt"%(args.name, i+1)
|
| 312 |
+
torch.save(
|
| 313 |
+
{
|
| 314 |
+
#"g": g_module.state_dict(),
|
| 315 |
+
#"d": d_module.state_dict(),
|
| 316 |
+
"g_ema": g_ema.state_dict(),
|
| 317 |
+
},
|
| 318 |
+
savename,
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
if __name__ == "__main__":
|
| 324 |
+
|
| 325 |
+
device = "cuda"
|
| 326 |
+
parser = TrainOptions()
|
| 327 |
+
args = parser.parse()
|
| 328 |
+
if args.local_rank == 0:
|
| 329 |
+
print('*'*98)
|
| 330 |
+
if not os.path.exists("log/%s/"%(args.name)):
|
| 331 |
+
os.makedirs("log/%s/"%(args.name))
|
| 332 |
+
if not os.path.exists("checkpoint/%s/"%(args.name)):
|
| 333 |
+
os.makedirs("checkpoint/%s/"%(args.name))
|
| 334 |
+
|
| 335 |
+
n_gpu = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
|
| 336 |
+
args.distributed = n_gpu > 1
|
| 337 |
+
|
| 338 |
+
if args.distributed:
|
| 339 |
+
torch.cuda.set_device(args.local_rank)
|
| 340 |
+
torch.distributed.init_process_group(backend="nccl", init_method="env://")
|
| 341 |
+
synchronize()
|
| 342 |
+
|
| 343 |
+
generator = VToonify(backbone = 'toonify').to(device)
|
| 344 |
+
generator.apply(weights_init)
|
| 345 |
+
g_ema = VToonify(backbone = 'toonify').to(device)
|
| 346 |
+
g_ema.eval()
|
| 347 |
+
|
| 348 |
+
basemodel = Generator(1024, 512, 8, 2).to(device) # G0
|
| 349 |
+
finetunemodel = Generator(1024, 512, 8, 2).to(device)
|
| 350 |
+
basemodel.load_state_dict(torch.load(args.stylegan_path, map_location=lambda storage, loc: storage)['g_ema'])
|
| 351 |
+
finetunemodel.load_state_dict(torch.load(args.finetunegan_path, map_location=lambda storage, loc: storage)['g_ema'])
|
| 352 |
+
fused_state_dict = blend_models(finetunemodel, basemodel, args.weight) # G1
|
| 353 |
+
generator.generator.load_state_dict(fused_state_dict) # load G1
|
| 354 |
+
g_ema.generator.load_state_dict(fused_state_dict)
|
| 355 |
+
requires_grad(basemodel, False)
|
| 356 |
+
requires_grad(generator.generator, False)
|
| 357 |
+
requires_grad(g_ema.generator, False)
|
| 358 |
+
|
| 359 |
+
if not args.pretrain:
|
| 360 |
+
generator.encoder.load_state_dict(torch.load(args.encoder_path, map_location=lambda storage, loc: storage)["g_ema"])
|
| 361 |
+
# we initialize the fusion modules to map f_G \otimes f_E to f_G.
|
| 362 |
+
for k in generator.fusion_out:
|
| 363 |
+
k.weight.data *= 0.01
|
| 364 |
+
k.weight[:,0:k.weight.shape[0],1,1].data += torch.eye(k.weight.shape[0]).cuda()
|
| 365 |
+
for k in generator.fusion_skip:
|
| 366 |
+
k.weight.data *= 0.01
|
| 367 |
+
k.weight[:,0:k.weight.shape[0],1,1].data += torch.eye(k.weight.shape[0]).cuda()
|
| 368 |
+
|
| 369 |
+
accumulate(g_ema.encoder, generator.encoder, 0)
|
| 370 |
+
accumulate(g_ema.fusion_out, generator.fusion_out, 0)
|
| 371 |
+
accumulate(g_ema.fusion_skip, generator.fusion_skip, 0)
|
| 372 |
+
|
| 373 |
+
g_parameters = list(generator.encoder.parameters())
|
| 374 |
+
if not args.pretrain:
|
| 375 |
+
g_parameters = g_parameters + list(generator.fusion_out.parameters()) + list(generator.fusion_skip.parameters())
|
| 376 |
+
|
| 377 |
+
g_optim = optim.Adam(
|
| 378 |
+
g_parameters,
|
| 379 |
+
lr=args.lr,
|
| 380 |
+
betas=(0.9, 0.99),
|
| 381 |
+
)
|
| 382 |
+
|
| 383 |
+
if args.distributed:
|
| 384 |
+
generator = nn.parallel.DistributedDataParallel(
|
| 385 |
+
generator,
|
| 386 |
+
device_ids=[args.local_rank],
|
| 387 |
+
output_device=args.local_rank,
|
| 388 |
+
broadcast_buffers=False,
|
| 389 |
+
find_unused_parameters=True,
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
parsingpredictor = BiSeNet(n_classes=19)
|
| 393 |
+
parsingpredictor.load_state_dict(torch.load(args.faceparsing_path, map_location=lambda storage, loc: storage))
|
| 394 |
+
parsingpredictor.to(device).eval()
|
| 395 |
+
requires_grad(parsingpredictor, False)
|
| 396 |
+
|
| 397 |
+
# we apply gaussian blur to the images to avoid flickers caused during downsampling
|
| 398 |
+
down = Downsample(kernel=[1, 3, 3, 1], factor=2).to(device)
|
| 399 |
+
requires_grad(down, False)
|
| 400 |
+
|
| 401 |
+
directions = torch.tensor(np.load(args.direction_path)).to(device)
|
| 402 |
+
|
| 403 |
+
if not args.pretrain:
|
| 404 |
+
discriminator = ConditionalDiscriminator(256).to(device)
|
| 405 |
+
|
| 406 |
+
d_optim = optim.Adam(
|
| 407 |
+
discriminator.parameters(),
|
| 408 |
+
lr=args.lr,
|
| 409 |
+
betas=(0.9, 0.99),
|
| 410 |
+
)
|
| 411 |
+
|
| 412 |
+
if args.distributed:
|
| 413 |
+
discriminator = nn.parallel.DistributedDataParallel(
|
| 414 |
+
discriminator,
|
| 415 |
+
device_ids=[args.local_rank],
|
| 416 |
+
output_device=args.local_rank,
|
| 417 |
+
broadcast_buffers=False,
|
| 418 |
+
find_unused_parameters=True,
|
| 419 |
+
)
|
| 420 |
+
|
| 421 |
+
percept = lpips.PerceptualLoss(model="net-lin", net="vgg", use_gpu=device.startswith("cuda"), gpu_ids=[args.local_rank])
|
| 422 |
+
requires_grad(percept.model.net, False)
|
| 423 |
+
|
| 424 |
+
pspencoder = load_psp_standalone(args.style_encoder_path, device)
|
| 425 |
+
|
| 426 |
+
if args.local_rank == 0:
|
| 427 |
+
print('Load models and data successfully loaded!')
|
| 428 |
+
|
| 429 |
+
if args.pretrain:
|
| 430 |
+
pretrain(args, generator, g_optim, g_ema, parsingpredictor, down, directions, basemodel, device)
|
| 431 |
+
else:
|
| 432 |
+
train(args, generator, discriminator, g_optim, d_optim, g_ema, percept, parsingpredictor, down, pspencoder, directions, basemodel, device)
|