Luisgust commited on
Commit
6031ea3
·
verified ·
1 Parent(s): 86644a6

Create vtoonify/model/raft/core/utils/flow_viz.py

Browse files
vtoonify/model/raft/core/utils/flow_viz.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Flow visualization code used from https://github.com/tomrunia/OpticalFlow_Visualization
2
+
3
+
4
+ # MIT License
5
+ #
6
+ # Copyright (c) 2018 Tom Runia
7
+ #
8
+ # Permission is hereby granted, free of charge, to any person obtaining a copy
9
+ # of this software and associated documentation files (the "Software"), to deal
10
+ # in the Software without restriction, including without limitation the rights
11
+ # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12
+ # copies of the Software, and to permit persons to whom the Software is
13
+ # furnished to do so, subject to conditions.
14
+ #
15
+ # Author: Tom Runia
16
+ # Date Created: 2018-08-03
17
+
18
+ import numpy as np
19
+
20
+ def make_colorwheel():
21
+ """
22
+ Generates a color wheel for optical flow visualization as presented in:
23
+ Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
24
+ URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf
25
+
26
+ Code follows the original C++ source code of Daniel Scharstein.
27
+ Code follows the the Matlab source code of Deqing Sun.
28
+
29
+ Returns:
30
+ np.ndarray: Color wheel
31
+ """
32
+
33
+ RY = 15
34
+ YG = 6
35
+ GC = 4
36
+ CB = 11
37
+ BM = 13
38
+ MR = 6
39
+
40
+ ncols = RY + YG + GC + CB + BM + MR
41
+ colorwheel = np.zeros((ncols, 3))
42
+ col = 0
43
+
44
+ # RY
45
+ colorwheel[0:RY, 0] = 255
46
+ colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY)
47
+ col = col+RY
48
+ # YG
49
+ colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG)
50
+ colorwheel[col:col+YG, 1] = 255
51
+ col = col+YG
52
+ # GC
53
+ colorwheel[col:col+GC, 1] = 255
54
+ colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC)
55
+ col = col+GC
56
+ # CB
57
+ colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB)
58
+ colorwheel[col:col+CB, 2] = 255
59
+ col = col+CB
60
+ # BM
61
+ colorwheel[col:col+BM, 2] = 255
62
+ colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM)
63
+ col = col+BM
64
+ # MR
65
+ colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR)
66
+ colorwheel[col:col+MR, 0] = 255
67
+ return colorwheel
68
+
69
+
70
+ def flow_uv_to_colors(u, v, convert_to_bgr=False):
71
+ """
72
+ Applies the flow color wheel to (possibly clipped) flow components u and v.
73
+
74
+ According to the C++ source code of Daniel Scharstein
75
+ According to the Matlab source code of Deqing Sun
76
+
77
+ Args:
78
+ u (np.ndarray): Input horizontal flow of shape [H,W]
79
+ v (np.ndarray): Input vertical flow of shape [H,W]
80
+ convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
81
+
82
+ Returns:
83
+ np.ndarray: Flow visualization image of shape [H,W,3]
84
+ """
85
+ flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8)
86
+ colorwheel = make_colorwheel() # shape [55x3]
87
+ ncols = colorwheel.shape[0]
88
+ rad = np.sqrt(np.square(u) + np.square(v))
89
+ a = np.arctan2(-v, -u)/np.pi
90
+ fk = (a+1) / 2*(ncols-1)
91
+ k0 = np.floor(fk).astype(np.int32)
92
+ k1 = k0 + 1
93
+ k1[k1 == ncols] = 0
94
+ f = fk - k0
95
+ for i in range(colorwheel.shape[1]):
96
+ tmp = colorwheel[:,i]
97
+ col0 = tmp[k0] / 255.0
98
+ col1 = tmp[k1] / 255.0
99
+ col = (1-f)*col0 + f*col1
100
+ idx = (rad <= 1)
101
+ col[idx] = 1 - rad[idx] * (1-col[idx])
102
+ col[~idx] = col[~idx] * 0.75 # out of range
103
+ # Note the 2-i => BGR instead of RGB
104
+ ch_idx = 2-i if convert_to_bgr else i
105
+ flow_image[:,:,ch_idx] = np.floor(255 * col)
106
+ return flow_image
107
+
108
+
109
+ def flow_to_image(flow_uv, clip_flow=None, convert_to_bgr=False):
110
+ """
111
+ Expects a two dimensional flow image of shape.
112
+
113
+ Args:
114
+ flow_uv (np.ndarray): Flow UV image of shape [H,W,2]
115
+ clip_flow (float, optional): Clip maximum of flow values. Defaults to None.
116
+ convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
117
+
118
+ Returns:
119
+ np.ndarray: Flow visualization image of shape [H,W,3]
120
+ """
121
+ assert flow_uv.ndim == 3, 'input flow must have three dimensions'
122
+ assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]'
123
+ if clip_flow is not None:
124
+ flow_uv = np.clip(flow_uv, 0, clip_flow)
125
+ u = flow_uv[:,:,0]
126
+ v = flow_uv[:,:,1]
127
+ rad = np.sqrt(np.square(u) + np.square(v))
128
+ rad_max = np.max(rad)
129
+ epsilon = 1e-5
130
+ u = u / (rad_max + epsilon)
131
+ v = v / (rad_max + epsilon)
132
+ return flow_uv_to_colors(u, v, convert_to_bgr)