Luisgust commited on
Commit
480352e
·
verified ·
1 Parent(s): d54ca85

Create vtoonify/model/encoder/encoders/helpers.py

Browse files
vtoonify/model/encoder/encoders/helpers.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from collections import namedtuple
3
+ import torch
4
+ from torch.nn import Conv2d, BatchNorm2d, PReLU, ReLU, Sigmoid, MaxPool2d, AdaptiveAvgPool2d, Sequential, Module
5
+
6
+ """
7
+ ArcFace implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch)
8
+ """
9
+
10
+
11
+ class Flatten(Module):
12
+ def forward(self, input):
13
+ return input.view(input.size(0), -1)
14
+
15
+
16
+ def l2_norm(input, axis=1):
17
+ norm = torch.norm(input, 2, axis, True)
18
+ output = torch.div(input, norm)
19
+ return output
20
+
21
+
22
+ class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])):
23
+ """ A named tuple describing a ResNet block. """
24
+
25
+
26
+ def get_block(in_channel, depth, num_units, stride=2):
27
+ return [Bottleneck(in_channel, depth, stride)] + [Bottleneck(depth, depth, 1) for i in range(num_units - 1)]
28
+
29
+
30
+ def get_blocks(num_layers):
31
+ if num_layers == 50:
32
+ blocks = [
33
+ get_block(in_channel=64, depth=64, num_units=3),
34
+ get_block(in_channel=64, depth=128, num_units=4),
35
+ get_block(in_channel=128, depth=256, num_units=14),
36
+ get_block(in_channel=256, depth=512, num_units=3)
37
+ ]
38
+ elif num_layers == 100:
39
+ blocks = [
40
+ get_block(in_channel=64, depth=64, num_units=3),
41
+ get_block(in_channel=64, depth=128, num_units=13),
42
+ get_block(in_channel=128, depth=256, num_units=30),
43
+ get_block(in_channel=256, depth=512, num_units=3)
44
+ ]
45
+ elif num_layers == 152:
46
+ blocks = [
47
+ get_block(in_channel=64, depth=64, num_units=3),
48
+ get_block(in_channel=64, depth=128, num_units=8),
49
+ get_block(in_channel=128, depth=256, num_units=36),
50
+ get_block(in_channel=256, depth=512, num_units=3)
51
+ ]
52
+ else:
53
+ raise ValueError("Invalid number of layers: {}. Must be one of [50, 100, 152]".format(num_layers))
54
+ return blocks
55
+
56
+
57
+ class SEModule(Module):
58
+ def __init__(self, channels, reduction):
59
+ super(SEModule, self).__init__()
60
+ self.avg_pool = AdaptiveAvgPool2d(1)
61
+ self.fc1 = Conv2d(channels, channels // reduction, kernel_size=1, padding=0, bias=False)
62
+ self.relu = ReLU(inplace=True)
63
+ self.fc2 = Conv2d(channels // reduction, channels, kernel_size=1, padding=0, bias=False)
64
+ self.sigmoid = Sigmoid()
65
+
66
+ def forward(self, x):
67
+ module_input = x
68
+ x = self.avg_pool(x)
69
+ x = self.fc1(x)
70
+ x = self.relu(x)
71
+ x = self.fc2(x)
72
+ x = self.sigmoid(x)
73
+ return module_input * x
74
+
75
+
76
+ class bottleneck_IR(Module):
77
+ def __init__(self, in_channel, depth, stride):
78
+ super(bottleneck_IR, self).__init__()
79
+ if in_channel == depth:
80
+ self.shortcut_layer = MaxPool2d(1, stride)
81
+ else:
82
+ self.shortcut_layer = Sequential(
83
+ Conv2d(in_channel, depth, (1, 1), stride, bias=False),
84
+ BatchNorm2d(depth)
85
+ )
86
+ self.res_layer = Sequential(
87
+ BatchNorm2d(in_channel),
88
+ Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), PReLU(depth),
89
+ Conv2d(depth, depth, (3, 3), stride, 1, bias=False), BatchNorm2d(depth)
90
+ )
91
+
92
+ def forward(self, x):
93
+ shortcut = self.shortcut_layer(x)
94
+ res = self.res_layer(x)
95
+ return res + shortcut
96
+
97
+
98
+ class bottleneck_IR_SE(Module):
99
+ def __init__(self, in_channel, depth, stride):
100
+ super(bottleneck_IR_SE, self).__init__()
101
+ if in_channel == depth:
102
+ self.shortcut_layer = MaxPool2d(1, stride)
103
+ else:
104
+ self.shortcut_layer = Sequential(
105
+ Conv2d(in_channel, depth, (1, 1), stride, bias=False),
106
+ BatchNorm2d(depth)
107
+ )
108
+ self.res_layer = Sequential(
109
+ BatchNorm2d(in_channel),
110
+ Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
111
+ PReLU(depth),
112
+ Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
113
+ BatchNorm2d(depth),
114
+ SEModule(depth, 16)
115
+ )
116
+
117
+ def forward(self, x):
118
+ shortcut = self.shortcut_layer(x)
119
+ res = self.res_layer(x)
120
+ return res + shortcut
121
+