Spaces:
Running
on
Zero
Running
on
Zero
import streamlit as st | |
from llama_cpp import Llama | |
from huggingface_hub import hf_hub_download | |
hf_hub_download( | |
repo_id="Qwen/Qwen2.5-7B-Instruct-GGUF", | |
filename="qwen2.5-7b-instruct-q2_k.gguf", | |
local_dir="./models", | |
) | |
# Load the model (on first run) | |
def load_model(): | |
return Llama( | |
model_path="models/qwen2.5-7b-instruct-q2_k.gguf", | |
n_ctx=1024, | |
n_threads=2, | |
n_threads_batch=2, | |
n_batch=4, | |
n_gpu_layers=0, | |
use_mlock=False, | |
use_mmap=True, | |
verbose=False, | |
) | |
llm = load_model() | |
# Session state for chat history | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = [] | |
st.title("🧠 Qwen2.5-7B-Instruct (Streamlit + GGUF)") | |
st.caption("Powered by `llama.cpp` and `llama-cpp-python` | 2-bit Q2_K inference") | |
with st.sidebar: | |
st.header("⚙️ Settings") | |
system_prompt = st.text_area("System Prompt", value="You are a helpful assistant.", height=80) | |
max_tokens = st.slider("Max tokens", 64, 2048, 512, step=32) | |
temperature = st.slider("Temperature", 0.1, 2.0, 0.7) | |
top_k = st.slider("Top-K", 1, 100, 40) | |
top_p = st.slider("Top-P", 0.1, 1.0, 0.95) | |
repeat_penalty = st.slider("Repetition Penalty", 1.0, 2.0, 1.1) | |
# Input box | |
user_input = st.chat_input("Ask something...") | |
if user_input: | |
# Add user message to chat | |
st.session_state.chat_history.append({"role": "user", "content": user_input}) | |
# Display user message | |
with st.chat_message("user"): | |
st.markdown(user_input) | |
# Construct the prompt | |
messages = [{"role": "system", "content": system_prompt}] + st.session_state.chat_history | |
# Stream response | |
with st.chat_message("assistant"): | |
full_response = "" | |
response_area = st.empty() | |
stream = llm.create_chat_completion( | |
messages=messages, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
top_k=top_k, | |
top_p=top_p, | |
repeat_penalty=repeat_penalty, | |
stream=True, | |
) | |
for chunk in stream: | |
if "choices" in chunk: | |
delta = chunk["choices"][0]["delta"].get("content", "") | |
full_response += delta | |
response_area.markdown(full_response) | |
st.session_state.chat_history.append({"role": "assistant", "content": full_response}) | |