File size: 5,834 Bytes
0ff6c39
 
 
cd26609
 
37ee1f3
cc91a1a
0ff6c39
cd26609
 
 
 
 
 
 
0813164
cd26609
0813164
 
cd26609
37ee1f3
cd26609
37ee1f3
 
cd26609
 
 
 
 
 
 
 
 
 
 
 
 
cc91a1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd26609
 
 
 
0813164
 
 
 
 
 
6e8312c
37ee1f3
 
0813164
 
 
37ee1f3
0813164
37ee1f3
0813164
37ee1f3
0813164
37ee1f3
 
 
 
 
 
 
 
6e8312c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd26609
37ee1f3
cd26609
 
 
 
6e8312c
cd26609
0ff6c39
cd26609
0ff6c39
cd26609
0ff6c39
 
 
cd26609
 
0ff6c39
 
 
 
3e4847c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import streamlit as st
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
import os
import gc
import shutil
import subprocess

# Available models
MODELS = {
    "Qwen2.5-7B-Instruct (Q2_K)": {
        "repo_id": "Qwen/Qwen2.5-7B-Instruct-GGUF",
        "filename": "qwen2.5-7b-instruct-q2_k.gguf",
        "description": "Qwen2.5-7B Instruct (Q2_K)"
    },
    "Gemma-3-4B-IT (Q4_K_M)": {
        "repo_id": "unsloth/gemma-3-4b-it-GGUF",
        "filename": "gemma-3-4b-it-Q4_K_M.gguf",
        "description": "Gemma 3 4B IT (Q4_K_M)"
    },
    "Phi-4-mini-Instruct (Q4_K_M)": {
        "repo_id": "unsloth/Phi-4-mini-instruct-GGUF",
        "filename": "Phi-4-mini-instruct-Q4_K_M.gguf",
        "description": "Phi-4 Mini Instruct (Q4_K_M)"
    },
}

with st.sidebar:
    st.header("⚙️ Settings")
    selected_model_name = st.selectbox("Select Model", list(MODELS.keys()))
    system_prompt = st.text_area("System Prompt", value="You are a helpful assistant.", height=80)
    max_tokens = st.slider("Max tokens", 64, 2048, 512, step=32)
    temperature = st.slider("Temperature", 0.1, 2.0, 0.7)
    top_k = st.slider("Top-K", 1, 100, 40)
    top_p = st.slider("Top-P", 0.1, 1.0, 0.95)
    repeat_penalty = st.slider("Repetition Penalty", 1.0, 2.0, 1.1)

    if st.button("🧹 Clear All Cached Models"):
        try:
            for f in os.listdir("models"):
                if f.endswith(".gguf"):
                    os.remove(os.path.join("models", f))
            st.success("Model cache cleared.")
        except Exception as e:
            st.error(f"Failed to clear models: {e}")

    if st.button("📦 Show Disk Usage"):
        try:
            usage = shutil.disk_usage(".")
            used = usage.used / (1024**3)
            free = usage.free / (1024**3)
            st.info(f"Disk Used: {used:.2f} GB | Free: {free:.2f} GB")
        except Exception as e:
            st.error(f"Disk usage error: {e}")

# Model info
selected_model = MODELS[selected_model_name]
model_path = os.path.join("models", selected_model["filename"])

# Init state
if "model_name" not in st.session_state:
    st.session_state.model_name = None
if "llm" not in st.session_state:
    st.session_state.llm = None

# Ensure model directory exists
os.makedirs("models", exist_ok=True)

def cleanup_old_models():
    for f in os.listdir("models"):
        if f.endswith(".gguf") and f != selected_model["filename"]:
            try:
                os.remove(os.path.join("models", f))
            except Exception as e:
                st.warning(f"Couldn't delete old model {f}: {e}")

def download_model():
    with st.spinner(f"Downloading {selected_model['filename']}..."):
        hf_hub_download(
            repo_id=selected_model["repo_id"],
            filename=selected_model["filename"],
            local_dir="./models",
            local_dir_use_symlinks=False,
        )

def try_load_model(path):
    try:
        return Llama(model_path=path, n_ctx=1024, n_threads=2, n_threads_batch=2, n_batch=4, n_gpu_layers=0, use_mlock=False, use_mmap=True, verbose=False)
    except Exception as e:
        return str(e)

def validate_or_download_model():
    if not os.path.exists(model_path):
        cleanup_old_models()
        download_model()

    # First load attempt
    result = try_load_model(model_path)
    if isinstance(result, str):
        st.warning(f"Initial load failed: {result}\nAttempting re-download...")
        try:
            os.remove(model_path)
        except:
            pass
        cleanup_old_models()
        download_model()
        result = try_load_model(model_path)
        if isinstance(result, str):
            st.error(f"Model still failed after re-download: {result}")
            st.stop()
        return result
    return result

# Load model if changed
if st.session_state.model_name != selected_model_name:
    if st.session_state.llm is not None:
        del st.session_state.llm
        gc.collect()
    st.session_state.llm = validate_or_download_model()
    st.session_state.model_name = selected_model_name

llm = st.session_state.llm

# Chat history state
if "chat_history" not in st.session_state:
    st.session_state.chat_history = []

st.title(f"🧠 {selected_model['description']} (Streamlit + GGUF)")
st.caption(f"Powered by `llama.cpp` | Model: {selected_model['filename']}")

user_input = st.chat_input("Ask something...")

if user_input:
    # Prevent appending user message if assistant hasn't replied yet
    if len(st.session_state.chat_history) % 2 == 1:
        st.warning("Please wait for the assistant to respond before sending another message.")
    else:
        st.session_state.chat_history.append({"role": "user", "content": user_input})

        with st.chat_message("user"):
            st.markdown(user_input)

        # Trim conversation history to max 8 turns (user+assistant)
        MAX_TURNS = 8
        trimmed_history = st.session_state.chat_history[-MAX_TURNS * 2:]
        messages = [{"role": "system", "content": system_prompt}] + trimmed_history

        with st.chat_message("assistant"):
            full_response = ""
            response_area = st.empty()

            stream = llm.create_chat_completion(
                messages=messages,
                max_tokens=max_tokens,
                temperature=temperature,
                top_k=top_k,
                top_p=top_p,
                repeat_penalty=repeat_penalty,
                stream=True,
            )

            for chunk in stream:
                if "choices" in chunk:
                    delta = chunk["choices"][0]["delta"].get("content", "")
                    full_response += delta
                    response_area.markdown(full_response)

            st.session_state.chat_history.append({"role": "assistant", "content": full_response})