File size: 4,156 Bytes
0ff6c39
 
 
cd26609
 
37ee1f3
0ff6c39
cd26609
 
 
 
 
 
 
 
 
 
 
 
37ee1f3
cd26609
37ee1f3
 
cd26609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37ee1f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd26609
 
 
 
 
37ee1f3
cd26609
 
 
 
37ee1f3
cd26609
 
37ee1f3
4443d46
 
 
0ff6c39
 
 
 
 
cd26609
0ff6c39
cd26609
0ff6c39
cd26609
0ff6c39
 
 
cd26609
 
0ff6c39
 
 
 
 
 
 
 
 
cd26609
 
 
 
0ff6c39
 
 
 
cd26609
0ff6c39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import streamlit as st
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
import os
import gc
import shutil

# Available models
MODELS = {
    "Qwen2.5-7B-Instruct (Q2_K)": {
        "repo_id": "Qwen/Qwen2.5-7B-Instruct-GGUF",
        "filename": "qwen2.5-7b-instruct-q2_k.gguf",
        "description": "Qwen2.5-7B Instruct (Q2_K)"
    },
    "Gemma-3-4B-IT (Q5_K_M)": {
        "repo_id": "unsloth/gemma-3-4b-it-GGUF",
        "filename": "gemma-3-4b-it-Q5_K_M.gguf",
        "description": "Gemma 3 4B IT (Q5_K_M)"
    },
    "Phi-4-mini-Instruct (Q4_K_M)": {
        "repo_id": "unsloth/Phi-4-mini-instruct-GGUF",
        "filename": "Phi-4-mini-instruct-Q4_K_M.gguf",
        "description": "Phi-4 Mini Instruct (Q4_K_M)"
    },
}

with st.sidebar:
    st.header("⚙️ Settings")
    selected_model_name = st.selectbox("Select Model", list(MODELS.keys()))
    system_prompt = st.text_area("System Prompt", value="You are a helpful assistant.", height=80)
    max_tokens = st.slider("Max tokens", 64, 2048, 512, step=32)
    temperature = st.slider("Temperature", 0.1, 2.0, 0.7)
    top_k = st.slider("Top-K", 1, 100, 40)
    top_p = st.slider("Top-P", 0.1, 1.0, 0.95)
    repeat_penalty = st.slider("Repetition Penalty", 1.0, 2.0, 1.1)

# Model info
selected_model = MODELS[selected_model_name]
model_path = os.path.join("models", selected_model["filename"])

# Make sure models dir exists
os.makedirs("models", exist_ok=True)

# Clear old models if new one isn't present
if not os.path.exists(model_path):
    for file in os.listdir("models"):
        if file.endswith(".gguf"):
            try:
                os.remove(os.path.join("models", file))
            except Exception as e:
                st.warning(f"Failed to delete {file}: {e}")

    # Download the selected model
    with st.spinner(f"Downloading {selected_model['filename']}..."):
        hf_hub_download(
            repo_id=selected_model["repo_id"],
            filename=selected_model["filename"],
            local_dir="./models",
            local_dir_use_symlinks=False,
        )

# Init state
if "model_name" not in st.session_state:
    st.session_state.model_name = None
if "llm" not in st.session_state:
    st.session_state.llm = None

# Load model if changed
if st.session_state.model_name != selected_model_name:
    if st.session_state.llm is not None:
        del st.session_state.llm
        gc.collect()

    st.session_state.llm = Llama(
        model_path=model_path,
        n_ctx=1024,
        n_threads=2,
        n_threads_batch=2,
        n_batch=4,
        n_gpu_layers=0,
        use_mlock=False,
        use_mmap=True,
        verbose=False,
    )
    st.session_state.model_name = selected_model_name

llm = st.session_state.llm

# Chat history state
if "chat_history" not in st.session_state:
    st.session_state.chat_history = []

st.title(f"🧠 {selected_model['description']} (Streamlit + GGUF)")
st.caption(f"Powered by `llama.cpp` | Model: {selected_model['filename']}")

user_input = st.chat_input("Ask something...")

if user_input:
    st.session_state.chat_history.append({"role": "user", "content": user_input})

    with st.chat_message("user"):
        st.markdown(user_input)

    # Trim conversation history to max 8 turns (user+assistant)
    MAX_TURNS = 8
    trimmed_history = st.session_state.chat_history[-MAX_TURNS * 2:]
    messages = [{"role": "system", "content": system_prompt}] + trimmed_history

    with st.chat_message("assistant"):
        full_response = ""
        response_area = st.empty()

        stream = llm.create_chat_completion(
            messages=messages,
            max_tokens=max_tokens,
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
            repeat_penalty=repeat_penalty,
            stream=True,
        )

        for chunk in stream:
            if "choices" in chunk:
                delta = chunk["choices"][0]["delta"].get("content", "")
                full_response += delta
                response_area.markdown(full_response)

        st.session_state.chat_history.append({"role": "assistant", "content": full_response})