File size: 4,774 Bytes
0ff6c39
 
 
cd26609
 
37ee1f3
0ff6c39
cd26609
 
 
 
 
 
 
0813164
cd26609
0813164
 
cd26609
37ee1f3
cd26609
37ee1f3
 
cd26609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0813164
 
 
 
 
 
37ee1f3
 
 
0813164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37ee1f3
0813164
37ee1f3
0813164
37ee1f3
0813164
37ee1f3
 
 
 
 
 
 
 
0813164
cd26609
37ee1f3
cd26609
 
 
 
0813164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd26609
0ff6c39
cd26609
0ff6c39
cd26609
0ff6c39
 
 
cd26609
 
0ff6c39
 
 
 
 
 
 
 
 
cd26609
 
 
 
0ff6c39
 
 
 
cd26609
0ff6c39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import streamlit as st
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
import os
import gc
import shutil

# Available models
MODELS = {
    "Qwen2.5-7B-Instruct (Q2_K)": {
        "repo_id": "Qwen/Qwen2.5-7B-Instruct-GGUF",
        "filename": "qwen2.5-7b-instruct-q2_k.gguf",
        "description": "Qwen2.5-7B Instruct (Q2_K)"
    },
    "Gemma-3-4B-IT (Q4_K_M)": {
        "repo_id": "unsloth/gemma-3-4b-it-GGUF",
        "filename": "gemma-3-4b-it-Q4_K_M.gguf",
        "description": "Gemma 3 4B IT (Q4_K_M)"
    },
    "Phi-4-mini-Instruct (Q4_K_M)": {
        "repo_id": "unsloth/Phi-4-mini-instruct-GGUF",
        "filename": "Phi-4-mini-instruct-Q4_K_M.gguf",
        "description": "Phi-4 Mini Instruct (Q4_K_M)"
    },
}

with st.sidebar:
    st.header("⚙️ Settings")
    selected_model_name = st.selectbox("Select Model", list(MODELS.keys()))
    system_prompt = st.text_area("System Prompt", value="You are a helpful assistant.", height=80)
    max_tokens = st.slider("Max tokens", 64, 2048, 512, step=32)
    temperature = st.slider("Temperature", 0.1, 2.0, 0.7)
    top_k = st.slider("Top-K", 1, 100, 40)
    top_p = st.slider("Top-P", 0.1, 1.0, 0.95)
    repeat_penalty = st.slider("Repetition Penalty", 1.0, 2.0, 1.1)

# Model info
selected_model = MODELS[selected_model_name]
model_path = os.path.join("models", selected_model["filename"])

# Init state
if "model_name" not in st.session_state:
    st.session_state.model_name = None
if "llm" not in st.session_state:
    st.session_state.llm = None

# Make sure models dir exists
os.makedirs("models", exist_ok=True)

# If the selected model file does not exist or is invalid, clean up and re-download
def validate_or_download_model():
    if not os.path.exists(model_path):
        cleanup_old_models()
        download_model()
        return
    try:
        _ = Llama(model_path=model_path, n_ctx=16, n_threads=1)  # dummy check
    except Exception as e:
        st.warning(f"Model file was invalid or corrupt: {e}\nRedownloading...")
        cleanup_old_models()
        download_model()

def cleanup_old_models():
    for f in os.listdir("models"):
        if f.endswith(".gguf") and f != selected_model["filename"]:
            try:
                os.remove(os.path.join("models", f))
            except Exception as e:
                st.warning(f"Couldn't delete old model {f}: {e}")

def download_model():
    with st.spinner(f"Downloading {selected_model['filename']}..."):
        hf_hub_download(
            repo_id=selected_model["repo_id"],
            filename=selected_model["filename"],
            local_dir="./models",
            local_dir_use_symlinks=False,
        )

validate_or_download_model()

# Load model if changed
if st.session_state.model_name != selected_model_name:
    if st.session_state.llm is not None:
        del st.session_state.llm
        gc.collect()
    try:
        st.session_state.llm = Llama(
            model_path=model_path,
            n_ctx=1024,
            n_threads=2,
            n_threads_batch=2,
            n_batch=4,
            n_gpu_layers=0,
            use_mlock=False,
            use_mmap=True,
            verbose=False,
        )
    except Exception as e:
        st.error(f"Failed to load model: {e}")
        st.stop()
    st.session_state.model_name = selected_model_name

llm = st.session_state.llm

# Chat history state
if "chat_history" not in st.session_state:
    st.session_state.chat_history = []

st.title(f"🧠 {selected_model['description']} (Streamlit + GGUF)")
st.caption(f"Powered by `llama.cpp` | Model: {selected_model['filename']}")

user_input = st.chat_input("Ask something...")

if user_input:
    st.session_state.chat_history.append({"role": "user", "content": user_input})

    with st.chat_message("user"):
        st.markdown(user_input)

    # Trim conversation history to max 8 turns (user+assistant)
    MAX_TURNS = 8
    trimmed_history = st.session_state.chat_history[-MAX_TURNS * 2:]
    messages = [{"role": "system", "content": system_prompt}] + trimmed_history

    with st.chat_message("assistant"):
        full_response = ""
        response_area = st.empty()

        stream = llm.create_chat_completion(
            messages=messages,
            max_tokens=max_tokens,
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
            repeat_penalty=repeat_penalty,
            stream=True,
        )

        for chunk in stream:
            if "choices" in chunk:
                delta = chunk["choices"][0]["delta"].get("content", "")
                full_response += delta
                response_area.markdown(full_response)

        st.session_state.chat_history.append({"role": "assistant", "content": full_response})