Spaces:
Sleeping
Sleeping
File size: 5,348 Bytes
04f475a e73380c 04f475a 29afa83 7b63336 55ca203 7b63336 56732d1 b1f272d 1bec4ea 56732d1 07326b1 cf48067 55ca203 cf48067 765f053 55ca203 07326b1 29afa83 07326b1 29afa83 f825898 04f475a f825898 df033c3 04f475a f825898 29afa83 df033c3 29afa83 4bfa63a 07326b1 df033c3 29afa83 f83534a 29afa83 55ca203 853b45e 55ca203 1bec4ea b1f272d f83534a b1f272d f83534a b1f272d 56732d1 1bec4ea 56732d1 f83534a 55ca203 b1f272d 55ca203 b1f272d 55ca203 b1f272d 07326b1 b1f272d 1bec4ea b1f272d 07326b1 df033c3 07326b1 df033c3 07326b1 b1f272d 07326b1 55ca203 07326b1 55ca203 07326b1 55ca203 07326b1 55ca203 07326b1 55ca203 b1f272d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import streamlit as st
from transformers import pipeline
from PIL import Image
from huggingface_hub import InferenceClient
import os
import openai # Added import
# Set page configuration
st.set_page_config(
page_title="DelishAI - Your Culinary Assistant",
page_icon="🍽️",
layout="centered",
initial_sidebar_state="expanded",
)
def local_css():
st.markdown(
"""
<style>
/* [Your existing CSS styles here] */
</style>
""", unsafe_allow_html=True
)
local_css() # Apply the CSS
# Hugging Face API key
API_KEY = st.secrets["HF_API_KEY"]
# Initialize the Hugging Face Inference Client
client = InferenceClient(api_key=API_KEY)
# Load the image classification pipeline
@st.cache_resource
def load_image_classification_pipeline():
""" Load the image classification pipeline using a pretrained model. """
return pipeline("image-classification", model="Shresthadev403/food-image-classification")
pipe_classification = load_image_classification_pipeline()
# Function to generate ingredients using Hugging Face Inference Client
def get_ingredients_qwen(food_name):
""" Generate a list of ingredients for the given food item using Qwen NLP model. Returns a clean, comma-separated list of ingredients. """
messages = [
{
"role": "user",
"content": f"List only the main ingredients for {food_name}. "
f"Respond in a concise, comma-separated list without any extra text or explanations."
}
]
try:
completion = client.chat.completions.create(
model="Qwen/Qwen2.5-Coder-32B-Instruct", messages=messages, max_tokens=50
)
generated_text = completion.choices[0].message["content"].strip()
return generated_text
except Exception as e:
return f"Error generating ingredients: {e}"
# **Set OpenAI API Key**
openai.api_key = st.secrets["openai"] # Ensure you have this in your secrets
# Main content
st.markdown('<div class="title"><h1>DelishAI - Your Culinary Assistant</h1></div>', unsafe_allow_html=True)
# Add banner image
st.image("IR_IMAGE.png", use_container_width=True)
# Sidebar for model information (hidden on small screens)
with st.sidebar:
st.title("Model Information")
st.write("**Image Classification Model**")
st.write("Shresthadev403/food-image-classification")
st.write("**LLM for Ingredients**")
st.write("Qwen/Qwen2.5-Coder-32B-Instruct")
st.markdown("---")
st.markdown("<p style='text-align: center;'>Developed by Muhammad Hassan Butt.</p>", unsafe_allow_html=True)
# Assuming `sample_images` is defined somewhere in your code
sample_images = {
"Pizza": "path_to_pizza_image.jpg",
"Salad": "path_to_salad_image.jpg",
# Add more sample images as needed
}
cols = st.columns(len(sample_images))
for idx, (name, file_path) in enumerate(sample_images.items()):
with cols[idx]:
if st.button(f"{name}", key=name):
uploaded_file = file_path
# File uploader
st.subheader("Upload a food image:")
uploaded_file = st.file_uploader("", type=["jpg", "png", "jpeg"])
if 'uploaded_file' in locals() and uploaded_file is not None:
# Display the uploaded image
if isinstance(uploaded_file, str): # Sample image selected
image = Image.open(uploaded_file)
else: # User uploaded image
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_container_width=True)
# Classification button
if st.button("Classify"):
with st.spinner("Classifying..."):
# Make predictions
predictions = pipe_classification(image)
# Display only the top prediction
top_food = predictions[0]['label']
st.header(f"🍽️ Food: {top_food}")
# Generate and display ingredients for the top prediction
st.subheader("📝 Ingredients")
try:
ingredients = get_ingredients_qwen(top_food)
st.write(ingredients)
except Exception as e:
st.error(f"Error generating ingredients: {e}")
# **Healthier Alternatives using OpenAI API**
st.subheader("💡 Healthier Alternatives")
try:
response = openai.ChatCompletion.create(
model="gpt-4o", # You can choose the model you prefer
messages=[
{
"role": "system",
"content": "You are a helpful assistant specializing in providing healthy alternatives to various dishes."
},
{
"role": "user",
"content": f"What's a healthy {top_food} recipe, and why is it healthy?"
}
],
max_tokens=200, # Adjust as needed
temperature=0.7, # Adjust creativity level as needed
)
result = response['choices'][0]['message']['content'].strip()
st.write(result)
except Exception as e:
st.error(f"Unable to generate healthier alternatives: {e}")
else:
st.info("Please select or upload an image to get started.")
|