Spaces:
Sleeping
Sleeping
File size: 2,438 Bytes
04f475a e73380c 04f475a 7b63336 f825898 04f475a f825898 800f4d4 04f475a f825898 e73380c a27e928 e73380c a27e928 e73380c a27e928 e73380c a27e928 800f4d4 e73380c 800f4d4 4bfa63a a27e928 4bfa63a f825898 7b63336 ff3533c 94c304e 7b63336 800f4d4 ff3533c 800f4d4 e73380c 94c304e 04f475a 800f4d4 04f475a f825898 800f4d4 f825898 94c304e 800f4d4 f825898 a27e928 f825898 7b63336 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
import streamlit as st
from transformers import pipeline
from PIL import Image
import os
# Load the image classification pipeline
@st.cache_resource
def load_image_classification_pipeline():
"""
Load the image classification pipeline using a pretrained model.
"""
return pipeline("image-classification", model="Shresthadev403/food-image-classification")
pipe_classification = load_image_classification_pipeline()
# Load the GPT-Neo model for ingredient generation
@st.cache_resource
def load_llama_pipeline():
"""
Load the GPT-Neo model for ingredient generation.
"""
return pipeline("text-generation", model="EleutherAI/gpt-neo-1.3B")
pipe_llama = load_llama_pipeline()
# Function to generate ingredients using GPT-Neo
def get_ingredients_llama(food_name):
"""
Generate a list of ingredients for the given food item using GPT-Neo.
"""
prompt = f"List the main ingredients typically used to prepare {food_name}."
try:
response = pipe_llama(prompt, max_length=50, num_return_sequences=1)
return response[0]["generated_text"].strip()
except Exception as e:
return f"Error generating ingredients: {e}"
# Streamlit app setup
st.title("Food Image Recognition with Ingredients")
# Add banner image
st.image("IR_IMAGE.png", caption="Food Recognition Model", use_column_width=True)
# Sidebar for model information
st.sidebar.title("Model Information")
st.sidebar.write("**Image Classification Model**: Shresthadev403/food-image-classification")
st.sidebar.write("**LLM for Ingredients**: EleutherAI/gpt-neo-1.3B")
# Upload image
uploaded_file = st.file_uploader("Choose a food image...", type=["jpg", "png", "jpeg"])
if uploaded_file is not None:
# Display the uploaded image
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
st.write("Classifying...")
# Make predictions
predictions = pipe_classification(image)
# Display only the top prediction
top_food = predictions[0]['label']
st.header(f"Food: {top_food}")
# Generate and display ingredients for the top prediction
st.subheader("Ingredients")
try:
ingredients = get_ingredients_llama(top_food)
st.write(ingredients)
except Exception as e:
st.error(f"Error generating ingredients: {e}")
# Footer
st.sidebar.markdown("Created with ❤️ using Streamlit and Hugging Face.") |