Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| # Load the model and tokenizer | |
| model_name = "Telugu-LLM-Labs/Indic-gemma-2b-finetuned-sft-Navarasa-2.0" | |
| model = AutoModelForCausalLM.from_pretrained(model_name, load_in_4bit=False, device_map="auto") | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| def generate_prompt(instruction, user_input): | |
| """ | |
| Generates a prompt for the model to ensure it responds with the intent in the same language as the input. | |
| """ | |
| return f""" | |
| ### Instruction: | |
| {instruction} | |
| ### Input: | |
| {user_input} | |
| ### Response: | |
| """ | |
| def get_model_response(user_input, instruction="Identify and summarize the core intent in the same language:"): | |
| """ | |
| Gets the model's response, ensuring it matches the input language and focuses on extracting a concise intent. | |
| """ | |
| input_text = generate_prompt(instruction, user_input) | |
| inputs = tokenizer([input_text], return_tensors="pt") | |
| outputs = model.generate(**inputs, max_new_tokens=300, use_cache=True) | |
| response = tokenizer.batch_decode(outputs)[0] | |
| return response.split("### Response:")[-1].strip() | |
| # Gradio interface | |
| iface = gr.Interface( | |
| fn=get_model_response, | |
| inputs=[ | |
| gr.inputs.Textbox(label="Input Text"), | |
| gr.inputs.Textbox(label="Instruction", default="Identify and summarize the core intent in the same language:"), | |
| ], | |
| outputs=gr.outputs.Textbox(label="Response"), | |
| title="Intent Summarization", | |
| description="Summarize the core intent of the input text in the same language.", | |
| ) | |
| iface.launch() |