Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,45 +1,30 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
# from transformers import pipeline
|
| 3 |
from PIL import Image
|
| 4 |
import face_recognition
|
| 5 |
import cv2
|
| 6 |
import numpy as np
|
| 7 |
-
import requests
|
| 8 |
import os
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
Images = [] # List to store Images
|
| 15 |
-
classnames = [] # List to store classnames
|
| 16 |
-
directory = "photos"
|
| 17 |
-
myList = os.listdir(directory)
|
| 18 |
-
|
| 19 |
-
st.write("Photographs found in folder : ")
|
| 20 |
-
for cls in myList:
|
| 21 |
-
if os.path.splitext(cls)[1] in [".jpg", ".jpeg"]:
|
| 22 |
-
img_path = os.path.join(directory, cls)
|
| 23 |
-
curImg = cv2.imread(img_path)
|
| 24 |
-
Images.append(curImg)
|
| 25 |
-
st.write(os.path.splitext(cls)[0])
|
| 26 |
-
classnames.append(os.path.splitext(cls)[0])
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
|
| 37 |
-
|
| 38 |
-
image = np.asarray(test_image)
|
| 39 |
|
| 40 |
-
|
|
|
|
| 41 |
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
|
| 42 |
-
facesCurFrame
|
| 43 |
encodesCurFrame = face_recognition.face_encodings(imgS, facesCurFrame)
|
| 44 |
|
| 45 |
name = "Unknown" # Default name for unknown faces
|
|
@@ -48,48 +33,36 @@ if file_name is not None:
|
|
| 48 |
# Checking if faces are detected
|
| 49 |
if len(encodesCurFrame) > 0:
|
| 50 |
for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame):
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
faceDis = face_recognition.face_distance(encodeListknown, encodeFace)
|
| 54 |
matchIndex = np.argmin(faceDis)
|
| 55 |
|
| 56 |
if matches[matchIndex]:
|
| 57 |
-
name =
|
| 58 |
match_found = True # Set the flag to True
|
| 59 |
|
| 60 |
y1, x2, y2, x1 = faceLoc
|
| 61 |
y1, x2, y2, x1 = (y1 * 4), (x2 * 4), (y2 * 4) ,(x1 * 4)
|
| 62 |
-
cv2.rectangle(test_image
|
| 63 |
-
cv2.rectangle(test_image
|
| 64 |
-
cv2.putText(test_image
|
| 65 |
|
| 66 |
-
|
| 67 |
-
else:
|
| 68 |
-
st.warning("No faces detected in the image. Face recognition failed.")
|
| 69 |
|
| 70 |
-
|
| 71 |
-
# col1.image(image, use_column_width=True)
|
| 72 |
-
|
| 73 |
-
# pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
| 74 |
-
|
| 75 |
-
# st.title("AIMLJan24 First App on Hugging face - Hot Dog? Or Not?")
|
| 76 |
-
|
| 77 |
-
# file_name = st.file_uploader("Upload the test image to find is this hot dog ! ")
|
| 78 |
-
|
| 79 |
-
# if file_name is not None:
|
| 80 |
-
# col1, col2 = st.columns(2)
|
| 81 |
|
| 82 |
-
#
|
| 83 |
-
|
| 84 |
-
|
| 85 |
|
| 86 |
-
#
|
| 87 |
-
|
| 88 |
-
# col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")
|
| 89 |
|
|
|
|
|
|
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
| 93 |
|
| 94 |
-
# x = st.slider('Select a value')
|
| 95 |
-
# st.write(x, 'squared is', x * x)
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
| 2 |
from PIL import Image
|
| 3 |
import face_recognition
|
| 4 |
import cv2
|
| 5 |
import numpy as np
|
|
|
|
| 6 |
import os
|
| 7 |
|
| 8 |
+
def load_images(directory):
|
| 9 |
+
images = []
|
| 10 |
+
classnames = []
|
| 11 |
+
file_list = os.listdir(directory)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
st.write("Photographs found in folder : ")
|
| 14 |
+
for file in file_list:
|
| 15 |
+
if os.path.splitext(file)[1] in [".jpg", ".jpeg"]:
|
| 16 |
+
img_path = os.path.join(directory, file)
|
| 17 |
+
cur_img = cv2.imread(img_path)
|
| 18 |
+
images.append(cur_img)
|
| 19 |
+
st.write(os.path.splitext(file)[0])
|
| 20 |
+
classnames.append(os.path.splitext(file)[0])
|
| 21 |
|
| 22 |
+
return images, classnames
|
|
|
|
| 23 |
|
| 24 |
+
def recognize_faces(test_image, known_encodings, class_names):
|
| 25 |
+
imgS = cv2.resize(test_image, (0, 0), None, 0.25, 0.25)
|
| 26 |
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
|
| 27 |
+
facesCurFrame = face_recognition.face_locations(imgS)
|
| 28 |
encodesCurFrame = face_recognition.face_encodings(imgS, facesCurFrame)
|
| 29 |
|
| 30 |
name = "Unknown" # Default name for unknown faces
|
|
|
|
| 33 |
# Checking if faces are detected
|
| 34 |
if len(encodesCurFrame) > 0:
|
| 35 |
for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame):
|
| 36 |
+
matches = face_recognition.compare_faces(known_encodings, encodeFace)
|
| 37 |
+
faceDis = face_recognition.face_distance(known_encodings, encodeFace)
|
|
|
|
| 38 |
matchIndex = np.argmin(faceDis)
|
| 39 |
|
| 40 |
if matches[matchIndex]:
|
| 41 |
+
name = class_names[matchIndex].upper()
|
| 42 |
match_found = True # Set the flag to True
|
| 43 |
|
| 44 |
y1, x2, y2, x1 = faceLoc
|
| 45 |
y1, x2, y2, x1 = (y1 * 4), (x2 * 4), (y2 * 4) ,(x1 * 4)
|
| 46 |
+
cv2.rectangle(test_image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
| 47 |
+
cv2.rectangle(test_image, (x1, y2 - 35), (x2, y2), (0, 255, 0), cv2.FILLED)
|
| 48 |
+
cv2.putText(test_image, name, (x1 + 6, y2 - 6), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2)
|
| 49 |
|
| 50 |
+
return test_image
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
st.title("AIMLJan24 - Face Recognition")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
+
# Load images for face recognition
|
| 55 |
+
directory = "photos"
|
| 56 |
+
Images, classnames = load_images(directory)
|
| 57 |
|
| 58 |
+
# Load images for face recognition
|
| 59 |
+
encodeListknown = [face_recognition.face_encodings(img)[0] for img in Images]
|
|
|
|
| 60 |
|
| 61 |
+
# camera to take photo of user in question
|
| 62 |
+
file_name = st.file_uploader("Upload image")
|
| 63 |
|
| 64 |
+
if file_name is not None:
|
| 65 |
+
test_image = np.array(Image.open(file_name))
|
| 66 |
+
image_with_recognition = recognize_faces(test_image, encodeListknown, classnames)
|
| 67 |
+
st.image(image_with_recognition, use_column_width=True, output_format="PNG")
|
| 68 |
|
|
|
|
|
|