LovnishVerma commited on
Commit
63f0f6c
·
verified ·
1 Parent(s): 468f201

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +29 -4
main.py CHANGED
@@ -88,20 +88,45 @@ def resultbt():
88
 
89
  flash('Image successfully uploaded and displayed below')
90
 
 
91
  try:
92
  # Process the image
93
  img = cv2.imread(temp_file.name)
94
  img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Convert to RGB
95
  img = crop_imgs([img])
96
- img = img.reshape(img.shape[1:])
97
- img = preprocess_imgs([img], (128, 128)) # Match model's input size
98
- img = np.expand_dims(img, axis=0) # Add batch dimension
99
-
 
 
 
100
  # Make prediction
101
  pred = braintumor_model.predict(img)
102
  prediction = 'Tumor Detected' if pred[0][0] >= 0.5 else 'No Tumor Detected'
103
  confidence_score = float(pred[0][0])
104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105
  # Prepare data for MongoDB
106
  result = {
107
  "firstname": firstname,
 
88
 
89
  flash('Image successfully uploaded and displayed below')
90
 
91
+
92
  try:
93
  # Process the image
94
  img = cv2.imread(temp_file.name)
95
  img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Convert to RGB
96
  img = crop_imgs([img])
97
+ img = img.reshape(img.shape[1:]) # Reshape to (height, width, channels)
98
+ img = preprocess_imgs([img], (128, 128)) # Resize to (128, 128, 3)
99
+
100
+ # Ensure the input shape matches the model's expectation
101
+ img = img[0] # Remove unnecessary extra dimension
102
+ img = np.expand_dims(img, axis=0) # Add batch dimension to match (1, 128, 128, 3)
103
+
104
  # Make prediction
105
  pred = braintumor_model.predict(img)
106
  prediction = 'Tumor Detected' if pred[0][0] >= 0.5 else 'No Tumor Detected'
107
  confidence_score = float(pred[0][0])
108
 
109
+ # Prepare data for MongoDB
110
+ result = {
111
+ "firstname": firstname,
112
+ "lastname": lastname,
113
+ "email": email,
114
+ "phone": phone,
115
+ "gender": gender,
116
+ "age": age,
117
+ "image_name": filename,
118
+ "prediction": prediction,
119
+ "confidence_score": confidence_score,
120
+ "timestamp": datetime.utcnow()
121
+ }
122
+
123
+ # Insert data into MongoDB
124
+ collection.insert_one(result)
125
+
126
+ # Return the result to the user
127
+ return render_template('resultbt.html', filename=filename, fn=firstname, ln=lastname, age=age, r=prediction, gender=gender)
128
+
129
+
130
  # Prepare data for MongoDB
131
  result = {
132
  "firstname": firstname,