AR_Testing / app.py
XiaoyiYangRIT
Update some files
3b1917e
raw
history blame
2.46 kB
import math
import torch
from transformers import AutoTokenizer, AutoModel, AutoProcessor
import gradio as gr
from PIL import Image
# === εˆ†ι…ε±‚εˆ°ε€š GPU ===
def split_model(model_path):
from transformers import AutoConfig
device_map = {}
world_size = torch.cuda.device_count()
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
num_layers = config.llm_config.num_hidden_layers
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
num_layers_per_gpu = [num_layers_per_gpu] * world_size
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
layer_cnt = 0
for i, num_layer in enumerate(num_layers_per_gpu):
for _ in range(num_layer):
device_map[f'language_model.model.layers.{layer_cnt}'] = i
layer_cnt += 1
device_map['vision_model'] = 0
device_map['mlp1'] = 0
device_map['language_model.model.tok_embeddings'] = 0
device_map['language_model.model.embed_tokens'] = 0
device_map['language_model.output'] = 0
device_map['language_model.model.norm'] = 0
device_map['language_model.model.rotary_emb'] = 0
device_map['language_model.lm_head'] = 0
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
return device_map
# === ζ¨‘εž‹θ·―εΎ„ ===
model_path = "OpenGVLab/InternVL3-14B"
device_map = split_model(model_path)
# === εŠ θ½½ζ¨‘εž‹ε’Œε€„η†ε™¨ ===
model = AutoModel.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True,
device_map=device_map
).eval()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
# === ζŽ¨η†ε‡½ζ•° ===
def infer(image: Image.Image, prompt: str):
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda")
output = model.generate(**inputs, max_new_tokens=512)
answer = tokenizer.decode(output[0], skip_special_tokens=True)
return answer
# === Gradio η•Œι’ ===
gr.Interface(
fn=infer,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Textbox(label="Your Prompt", placeholder="Ask a question about the image...")
],
outputs="text",
title="InternVL3-14B Multimodal Demo",
description="Upload an image and ask a question. InternVL3-14B will answer using vision + language."
).launch()