Spaces:
Sleeping
Sleeping
import math | |
import torch | |
from transformers import AutoTokenizer, AutoModel, AutoProcessor | |
import gradio as gr | |
from PIL import Image | |
# === ει ε±ε°ε€ GPU === | |
def split_model(model_path): | |
from transformers import AutoConfig | |
device_map = {} | |
world_size = torch.cuda.device_count() | |
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True) | |
num_layers = config.llm_config.num_hidden_layers | |
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5)) | |
num_layers_per_gpu = [num_layers_per_gpu] * world_size | |
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5) | |
layer_cnt = 0 | |
for i, num_layer in enumerate(num_layers_per_gpu): | |
for _ in range(num_layer): | |
device_map[f'language_model.model.layers.{layer_cnt}'] = i | |
layer_cnt += 1 | |
device_map['vision_model'] = 0 | |
device_map['mlp1'] = 0 | |
device_map['language_model.model.tok_embeddings'] = 0 | |
device_map['language_model.model.embed_tokens'] = 0 | |
device_map['language_model.output'] = 0 | |
device_map['language_model.model.norm'] = 0 | |
device_map['language_model.model.rotary_emb'] = 0 | |
device_map['language_model.lm_head'] = 0 | |
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0 | |
return device_map | |
# === 樑εθ·―εΎ === | |
model_path = "OpenGVLab/InternVL3-14B" | |
device_map = split_model(model_path) | |
# === ε 载樑εεε€ηε¨ === | |
model = AutoModel.from_pretrained( | |
model_path, | |
torch_dtype=torch.bfloat16, | |
low_cpu_mem_usage=True, | |
use_flash_attn=True, | |
trust_remote_code=True, | |
device_map=device_map | |
).eval() | |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) | |
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True) | |
# === ζ¨ηε½ζ° === | |
def infer(image: Image.Image, prompt: str): | |
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda") | |
output = model.generate(**inputs, max_new_tokens=512) | |
answer = tokenizer.decode(output[0], skip_special_tokens=True) | |
return answer | |
# === Gradio ηι’ === | |
gr.Interface( | |
fn=infer, | |
inputs=[ | |
gr.Image(type="pil", label="Upload Image"), | |
gr.Textbox(label="Your Prompt", placeholder="Ask a question about the image...") | |
], | |
outputs="text", | |
title="InternVL3-14B Multimodal Demo", | |
description="Upload an image and ask a question. InternVL3-14B will answer using vision + language." | |
).launch() | |