Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,6 +8,8 @@ import numpy as np
|
|
8 |
import gradio as gr
|
9 |
import io
|
10 |
import base64
|
|
|
|
|
11 |
|
12 |
# --- Cargar modelo ViT preentrenado fine‑tuned HAM10000 ---
|
13 |
TF_MODEL_NAME = "Anwarkh1/Skin_Cancer-Image_Classification"
|
@@ -25,6 +27,17 @@ model_vit.eval()
|
|
25 |
model_malignancy = load_learner("ada_learn_malben.pkl")
|
26 |
model_norm2000 = load_learner("ada_learn_skin_norm2000.pkl")
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
# Clases estándar de HAM10000
|
29 |
CLASSES = [
|
30 |
"Queratosis actínica / Bowen", "Carcinoma células basales",
|
@@ -59,7 +72,7 @@ def analizar_lesion_combined(img):
|
|
59 |
prob_malign = float(probs_mal[1])
|
60 |
pred_fast_type, _, _ = model_norm2000.predict(img_fastai)
|
61 |
|
62 |
-
# ViT
|
63 |
inputs_tf = feature_extractor_tf(img, return_tensors="pt")
|
64 |
with torch.no_grad():
|
65 |
outputs_tf = model_tf_vit(**inputs_tf)
|
@@ -69,6 +82,13 @@ def analizar_lesion_combined(img):
|
|
69 |
conf_tf = probs_tf[idx_tf]
|
70 |
mal_tf = "Maligno" if idx_tf in MALIGNANT_INDICES else "Benigno"
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
# Gráfico ViT base
|
73 |
colors = [RISK_LEVELS[i]['color'] for i in range(7)]
|
74 |
fig, ax = plt.subplots(figsize=(8, 3))
|
@@ -84,6 +104,7 @@ def analizar_lesion_combined(img):
|
|
84 |
plt.close(fig)
|
85 |
html_chart = f'<img src="data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}" style="max-width:100%"/>'
|
86 |
|
|
|
87 |
informe = f"""
|
88 |
<div style="font-family:sans-serif; max-width:800px; margin:auto">
|
89 |
<h2>🧪 Diagnóstico por múltiples modelos de IA</h2>
|
@@ -93,19 +114,22 @@ def analizar_lesion_combined(img):
|
|
93 |
<tr><td>🧬 Fast.ai (tipo)</td><td><b>{pred_fast_type}</b></td><td>N/A</td></tr>
|
94 |
<tr><td>⚠️ Fast.ai (malignidad)</td><td><b>{'Maligno' if prob_malign > 0.5 else 'Benigno'}</b></td><td>{prob_malign:.1%}</td></tr>
|
95 |
<tr><td>🌟 ViT fined‑tuned (HAM10000)</td><td><b>{mal_tf} ({class_tf_model})</b></td><td>{conf_tf:.1%}</td></tr>
|
|
|
96 |
</table><br>
|
97 |
<b>🩺 Recomendación automática:</b><br>
|
98 |
"""
|
|
|
|
|
99 |
risk = sum(probs_vit[i] * RISK_LEVELS[i]['weight'] for i in range(7))
|
100 |
-
if prob_malign > 0.7 or risk > 0.6:
|
101 |
informe += "🚨 <b>CRÍTICO</b> – Derivación urgente a oncología dermatológica"
|
102 |
-
elif prob_malign > 0.4 or risk > 0.4:
|
103 |
informe += "⚠️ <b>ALTO RIESGO</b> – Consulta con dermatólogo en 7 días"
|
104 |
elif risk > 0.2:
|
105 |
informe += "📋 <b>RIESGO MODERADO</b> – Evaluación programada en 2-4 semanas"
|
106 |
else:
|
107 |
informe += "✅ <b>BAJO RIESGO</b> – Seguimiento de rutina (3-6 meses)"
|
108 |
-
informe += "</div>"
|
109 |
|
110 |
return informe, html_chart
|
111 |
|
@@ -113,8 +137,10 @@ demo = gr.Interface(
|
|
113 |
fn=analizar_lesion_combined,
|
114 |
inputs=gr.Image(type="pil"),
|
115 |
outputs=[gr.HTML(label="Informe"), gr.HTML(label="Gráfico ViT base")],
|
116 |
-
title="Detector de Lesiones Cutáneas (ViT + Fast.ai)",
|
117 |
)
|
|
|
118 |
if __name__ == "__main__":
|
119 |
demo.launch()
|
120 |
|
|
|
|
8 |
import gradio as gr
|
9 |
import io
|
10 |
import base64
|
11 |
+
from torchvision import transforms
|
12 |
+
from efficientnet_pytorch import EfficientNet
|
13 |
|
14 |
# --- Cargar modelo ViT preentrenado fine‑tuned HAM10000 ---
|
15 |
TF_MODEL_NAME = "Anwarkh1/Skin_Cancer-Image_Classification"
|
|
|
27 |
model_malignancy = load_learner("ada_learn_malben.pkl")
|
28 |
model_norm2000 = load_learner("ada_learn_skin_norm2000.pkl")
|
29 |
|
30 |
+
# 🔹 EfficientNet B7 para binario (benigno vs maligno)
|
31 |
+
model_eff = EfficientNet.from_pretrained("efficientnet-b7", num_classes=2)
|
32 |
+
model_eff.eval()
|
33 |
+
|
34 |
+
eff_transform = transforms.Compose([
|
35 |
+
transforms.Resize((224, 224)),
|
36 |
+
transforms.ToTensor(),
|
37 |
+
transforms.Normalize([0.485, 0.456, 0.406],
|
38 |
+
[0.229, 0.224, 0.225])
|
39 |
+
])
|
40 |
+
|
41 |
# Clases estándar de HAM10000
|
42 |
CLASSES = [
|
43 |
"Queratosis actínica / Bowen", "Carcinoma células basales",
|
|
|
72 |
prob_malign = float(probs_mal[1])
|
73 |
pred_fast_type, _, _ = model_norm2000.predict(img_fastai)
|
74 |
|
75 |
+
# ViT fine‑tuned (último modelo recomendado)
|
76 |
inputs_tf = feature_extractor_tf(img, return_tensors="pt")
|
77 |
with torch.no_grad():
|
78 |
outputs_tf = model_tf_vit(**inputs_tf)
|
|
|
82 |
conf_tf = probs_tf[idx_tf]
|
83 |
mal_tf = "Maligno" if idx_tf in MALIGNANT_INDICES else "Benigno"
|
84 |
|
85 |
+
# EfficientNet B7
|
86 |
+
img_eff = eff_transform(img).unsqueeze(0)
|
87 |
+
with torch.no_grad():
|
88 |
+
out_eff = model_eff(img_eff)
|
89 |
+
prob_eff = torch.softmax(out_eff, dim=1)[0, 1].item()
|
90 |
+
eff_result = "Maligno" if prob_eff > 0.5 else "Benigno"
|
91 |
+
|
92 |
# Gráfico ViT base
|
93 |
colors = [RISK_LEVELS[i]['color'] for i in range(7)]
|
94 |
fig, ax = plt.subplots(figsize=(8, 3))
|
|
|
104 |
plt.close(fig)
|
105 |
html_chart = f'<img src="data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}" style="max-width:100%"/>'
|
106 |
|
107 |
+
# Generar informe
|
108 |
informe = f"""
|
109 |
<div style="font-family:sans-serif; max-width:800px; margin:auto">
|
110 |
<h2>🧪 Diagnóstico por múltiples modelos de IA</h2>
|
|
|
114 |
<tr><td>🧬 Fast.ai (tipo)</td><td><b>{pred_fast_type}</b></td><td>N/A</td></tr>
|
115 |
<tr><td>⚠️ Fast.ai (malignidad)</td><td><b>{'Maligno' if prob_malign > 0.5 else 'Benigno'}</b></td><td>{prob_malign:.1%}</td></tr>
|
116 |
<tr><td>🌟 ViT fined‑tuned (HAM10000)</td><td><b>{mal_tf} ({class_tf_model})</b></td><td>{conf_tf:.1%}</td></tr>
|
117 |
+
<tr><td>🏥 EfficientNet B7 (binario)</td><td><b>{eff_result}</b></td><td>{prob_eff:.1%}</td></tr>
|
118 |
</table><br>
|
119 |
<b>🩺 Recomendación automática:</b><br>
|
120 |
"""
|
121 |
+
|
122 |
+
# Nivel de riesgo automático
|
123 |
risk = sum(probs_vit[i] * RISK_LEVELS[i]['weight'] for i in range(7))
|
124 |
+
if prob_malign > 0.7 or risk > 0.6 or prob_eff > 0.7:
|
125 |
informe += "🚨 <b>CRÍTICO</b> – Derivación urgente a oncología dermatológica"
|
126 |
+
elif prob_malign > 0.4 or risk > 0.4 or prob_eff > 0.5:
|
127 |
informe += "⚠️ <b>ALTO RIESGO</b> – Consulta con dermatólogo en 7 días"
|
128 |
elif risk > 0.2:
|
129 |
informe += "📋 <b>RIESGO MODERADO</b> – Evaluación programada en 2-4 semanas"
|
130 |
else:
|
131 |
informe += "✅ <b>BAJO RIESGO</b> – Seguimiento de rutina (3-6 meses)"
|
132 |
+
informe += "</div>"
|
133 |
|
134 |
return informe, html_chart
|
135 |
|
|
|
137 |
fn=analizar_lesion_combined,
|
138 |
inputs=gr.Image(type="pil"),
|
139 |
outputs=[gr.HTML(label="Informe"), gr.HTML(label="Gráfico ViT base")],
|
140 |
+
title="Detector de Lesiones Cutáneas (ViT + Fast.ai + EfficientNet)",
|
141 |
)
|
142 |
+
|
143 |
if __name__ == "__main__":
|
144 |
demo.launch()
|
145 |
|
146 |
+
|