Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -22,13 +22,6 @@ if not os.path.exists(extract_dir):
|
|
22 |
|
23 |
model_tf = tf.saved_model.load(extract_dir)
|
24 |
|
25 |
-
# --- Inspección de firma del modelo TensorFlow ---
|
26 |
-
print("\n\n🔍 FIRMA DEL MODELO TENSORFLOW:")
|
27 |
-
for key, func in model_tf.signatures.items():
|
28 |
-
print(f"Firma: {key}")
|
29 |
-
print("Entradas:", func.structured_input_signature)
|
30 |
-
print("Salidas:", func.structured_outputs)
|
31 |
-
|
32 |
# Función helper para inferencia TensorFlow
|
33 |
def predict_tf(img: Image.Image):
|
34 |
try:
|
@@ -46,7 +39,7 @@ def predict_tf(img: Image.Image):
|
|
46 |
return probs
|
47 |
except Exception as e:
|
48 |
print(f"Error en predict_tf: {e}")
|
49 |
-
return np.zeros(
|
50 |
|
51 |
MODEL_NAME = "ahishamm/vit-base-HAM-10000-sharpened-patch-32"
|
52 |
feature_extractor = ViTImageProcessor.from_pretrained(MODEL_NAME)
|
@@ -81,8 +74,7 @@ def analizar_lesion_combined(img):
|
|
81 |
pred_idx_vit = int(np.argmax(probs_vit))
|
82 |
pred_class_vit = CLASSES[pred_idx_vit]
|
83 |
confidence_vit = probs_vit[pred_idx_vit]
|
84 |
-
except
|
85 |
-
print(f"Error en ViT prediction: {e}")
|
86 |
pred_class_vit = "Error"
|
87 |
confidence_vit = 0.0
|
88 |
probs_vit = np.zeros(len(CLASSES))
|
@@ -90,26 +82,24 @@ def analizar_lesion_combined(img):
|
|
90 |
try:
|
91 |
pred_fast_malignant, _, probs_fast_mal = model_malignancy.predict(img_fastai)
|
92 |
prob_malignant = float(probs_fast_mal[1])
|
93 |
-
except
|
94 |
-
print(f"Error en Fast.ai malignancy: {e}")
|
95 |
prob_malignant = 0.0
|
96 |
|
97 |
try:
|
98 |
-
pred_fast_type, _,
|
99 |
-
except
|
100 |
-
print(f"Error en Fast.ai tipo: {e}")
|
101 |
pred_fast_type = "Error"
|
102 |
|
103 |
try:
|
104 |
probs_tf = predict_tf(img)
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
else:
|
110 |
-
pred_class_tf =
|
111 |
-
|
112 |
-
|
113 |
pred_class_tf = "Error"
|
114 |
confidence_tf = 0.0
|
115 |
|
@@ -131,7 +121,7 @@ def analizar_lesion_combined(img):
|
|
131 |
|
132 |
informe = f"""
|
133 |
<div style="font-family:sans-serif; max-width:800px; margin:auto">
|
134 |
-
<h2
|
135 |
<table style="border-collapse: collapse; width:100%; font-size:16px">
|
136 |
<tr><th style="text-align:left">🔍 Modelo</th><th>Resultado</th><th>Confianza</th></tr>
|
137 |
<tr><td>🧠 ViT (transformer)</td><td><b>{pred_class_vit}</b></td><td>{confidence_vit:.1%}</td></tr>
|
@@ -140,7 +130,7 @@ def analizar_lesion_combined(img):
|
|
140 |
<tr><td>🔬 TensorFlow (saved_model)</td><td><b>{pred_class_tf}</b></td><td>{confidence_tf:.1%}</td></tr>
|
141 |
</table>
|
142 |
<br>
|
143 |
-
<b
|
144 |
"""
|
145 |
|
146 |
cancer_risk_score = sum(probs_vit[i] * RISK_LEVELS[i]['weight'] for i in range(7))
|
@@ -154,10 +144,8 @@ def analizar_lesion_combined(img):
|
|
154 |
informe += "✅ <b>BAJO RIESGO</b> – Seguimiento de rutina (3-6 meses)"
|
155 |
|
156 |
informe += "</div>"
|
157 |
-
|
158 |
return informe, html_chart
|
159 |
|
160 |
-
# Interfaz Gradio
|
161 |
demo = gr.Interface(
|
162 |
fn=analizar_lesion_combined,
|
163 |
inputs=gr.Image(type="pil", label="Sube una imagen de la lesión"),
|
@@ -170,5 +158,3 @@ demo = gr.Interface(
|
|
170 |
if __name__ == "__main__":
|
171 |
demo.launch()
|
172 |
|
173 |
-
|
174 |
-
|
|
|
22 |
|
23 |
model_tf = tf.saved_model.load(extract_dir)
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
# Función helper para inferencia TensorFlow
|
26 |
def predict_tf(img: Image.Image):
|
27 |
try:
|
|
|
39 |
return probs
|
40 |
except Exception as e:
|
41 |
print(f"Error en predict_tf: {e}")
|
42 |
+
return np.zeros(2)
|
43 |
|
44 |
MODEL_NAME = "ahishamm/vit-base-HAM-10000-sharpened-patch-32"
|
45 |
feature_extractor = ViTImageProcessor.from_pretrained(MODEL_NAME)
|
|
|
74 |
pred_idx_vit = int(np.argmax(probs_vit))
|
75 |
pred_class_vit = CLASSES[pred_idx_vit]
|
76 |
confidence_vit = probs_vit[pred_idx_vit]
|
77 |
+
except:
|
|
|
78 |
pred_class_vit = "Error"
|
79 |
confidence_vit = 0.0
|
80 |
probs_vit = np.zeros(len(CLASSES))
|
|
|
82 |
try:
|
83 |
pred_fast_malignant, _, probs_fast_mal = model_malignancy.predict(img_fastai)
|
84 |
prob_malignant = float(probs_fast_mal[1])
|
85 |
+
except:
|
|
|
86 |
prob_malignant = 0.0
|
87 |
|
88 |
try:
|
89 |
+
pred_fast_type, _, _ = model_norm2000.predict(img_fastai)
|
90 |
+
except:
|
|
|
91 |
pred_fast_type = "Error"
|
92 |
|
93 |
try:
|
94 |
probs_tf = predict_tf(img)
|
95 |
+
if len(probs_tf) == 2:
|
96 |
+
benign_prob, malignant_prob = probs_tf
|
97 |
+
pred_class_tf = "Maligno" if malignant_prob > benign_prob else "Benigno"
|
98 |
+
confidence_tf = max(probs_tf)
|
99 |
else:
|
100 |
+
pred_class_tf = "Modelo no binario"
|
101 |
+
confidence_tf = 0.0
|
102 |
+
except:
|
103 |
pred_class_tf = "Error"
|
104 |
confidence_tf = 0.0
|
105 |
|
|
|
121 |
|
122 |
informe = f"""
|
123 |
<div style="font-family:sans-serif; max-width:800px; margin:auto">
|
124 |
+
<h2>🦢 Diagnóstico por 4 modelos de IA</h2>
|
125 |
<table style="border-collapse: collapse; width:100%; font-size:16px">
|
126 |
<tr><th style="text-align:left">🔍 Modelo</th><th>Resultado</th><th>Confianza</th></tr>
|
127 |
<tr><td>🧠 ViT (transformer)</td><td><b>{pred_class_vit}</b></td><td>{confidence_vit:.1%}</td></tr>
|
|
|
130 |
<tr><td>🔬 TensorFlow (saved_model)</td><td><b>{pred_class_tf}</b></td><td>{confidence_tf:.1%}</td></tr>
|
131 |
</table>
|
132 |
<br>
|
133 |
+
<b>🦥 Recomendación automática:</b><br>
|
134 |
"""
|
135 |
|
136 |
cancer_risk_score = sum(probs_vit[i] * RISK_LEVELS[i]['weight'] for i in range(7))
|
|
|
144 |
informe += "✅ <b>BAJO RIESGO</b> – Seguimiento de rutina (3-6 meses)"
|
145 |
|
146 |
informe += "</div>"
|
|
|
147 |
return informe, html_chart
|
148 |
|
|
|
149 |
demo = gr.Interface(
|
150 |
fn=analizar_lesion_combined,
|
151 |
inputs=gr.Image(type="pil", label="Sube una imagen de la lesión"),
|
|
|
158 |
if __name__ == "__main__":
|
159 |
demo.launch()
|
160 |
|
|
|
|