Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,79 +1,85 @@
|
|
|
|
|
|
1 |
def analizar_lesion_combined(img):
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
probs_vit = outputs.logits.softmax(dim=-1).cpu().numpy()[0]
|
10 |
-
pred_idx_vit = int(np.argmax(probs_vit))
|
11 |
-
pred_class_vit = CLASSES[pred_idx_vit]
|
12 |
-
confidence_vit = probs_vit[pred_idx_vit]
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
pred_fast_type, _, probs_fast_type = model_norm2000.predict(img_fastai)
|
18 |
|
19 |
-
|
20 |
-
x_isic = preprocess_image_isic(img)
|
21 |
-
preds_isic_dict = model_isic(x_isic) # devuelve dict con tensores
|
22 |
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
plt.tight_layout()
|
45 |
-
buf = io.BytesIO()
|
46 |
-
plt.savefig(buf, format="png")
|
47 |
-
plt.close(fig)
|
48 |
-
img_bytes = buf.getvalue()
|
49 |
-
img_b64 = base64.b64encode(img_bytes).decode("utf-8")
|
50 |
-
html_chart = f'<img src="data:image/png;base64,{img_b64}" style="max-width:100%"/>'
|
51 |
|
52 |
-
|
53 |
-
informe = f"""
|
54 |
-
<div style="font-family:sans-serif; max-width:800px; margin:auto">
|
55 |
-
<h2>🧪 Diagnóstico por 4 modelos de IA</h2>
|
56 |
-
<table style="border-collapse: collapse; width:100%; font-size:16px">
|
57 |
-
<tr><th style="text-align:left">🔍 Modelo</th><th>Resultado</th><th>Confianza</th></tr>
|
58 |
-
<tr><td>🧠 ViT (transformer)</td><td><b>{pred_class_vit}</b></td><td>{confidence_vit:.1%}</td></tr>
|
59 |
-
<tr><td>🧬 Fast.ai (clasificación)</td><td><b>{pred_fast_type}</b></td><td>N/A</td></tr>
|
60 |
-
<tr><td>⚠️ Fast.ai (malignidad)</td><td><b>{"Maligno" if prob_malignant > 0.5 else "Benigno"}</b></td><td>{prob_malignant:.1%}</td></tr>
|
61 |
-
<tr><td>🔬 ISIC TensorFlow</td><td><b>{pred_class_isic}</b></td><td>{confidence_isic:.1%}</td></tr>
|
62 |
-
</table>
|
63 |
-
<br>
|
64 |
-
<b>🩺 Recomendación automática:</b><br>
|
65 |
-
"""
|
66 |
|
67 |
-
|
68 |
-
if prob_malignant > 0.7 or cancer_risk_score > 0.6:
|
69 |
-
informe += "🚨 <b>CRÍTICO</b> – Derivación urgente a oncología dermatológica"
|
70 |
-
elif prob_malignant > 0.4 or cancer_risk_score > 0.4:
|
71 |
-
informe += "⚠️ <b>ALTO RIESGO</b> – Consulta con dermatólogo en 7 días"
|
72 |
-
elif cancer_risk_score > 0.2:
|
73 |
-
informe += "📋 <b>RIESGO MODERADO</b> – Evaluación programada (2-4 semanas)"
|
74 |
-
else:
|
75 |
-
informe += "✅ <b>BAJO RIESGO</b> – Seguimiento de rutina (3-6 meses)"
|
76 |
|
77 |
-
|
|
|
|
|
|
|
|
|
78 |
|
79 |
-
return informe, html_chart
|
|
|
1 |
+
import traceback # Asegúrate de tener esto al inicio de tu script
|
2 |
+
|
3 |
def analizar_lesion_combined(img):
|
4 |
+
try:
|
5 |
+
# Convertir imagen para Fastai
|
6 |
+
img_fastai = PILImage.create(img)
|
7 |
+
|
8 |
+
# ViT prediction
|
9 |
+
inputs = feature_extractor(img, return_tensors="pt")
|
10 |
+
with torch.no_grad():
|
11 |
+
outputs = model_vit(**inputs)
|
12 |
+
probs_vit = outputs.logits.softmax(dim=-1).cpu().numpy()[0]
|
13 |
+
pred_idx_vit = int(np.argmax(probs_vit))
|
14 |
+
pred_class_vit = CLASSES[pred_idx_vit]
|
15 |
+
confidence_vit = probs_vit[pred_idx_vit]
|
16 |
|
17 |
+
# Fast.ai models
|
18 |
+
pred_fast_malignant, _, probs_fast_mal = model_malignancy.predict(img_fastai)
|
19 |
+
prob_malignant = float(probs_fast_mal[1]) # índice 1 = maligno
|
20 |
+
pred_fast_type, _, probs_fast_type = model_norm2000.predict(img_fastai)
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
# Modelo TensorFlow ISIC (usando TFSMLayer)
|
23 |
+
x_isic = preprocess_image_isic(img)
|
24 |
+
preds_isic_dict = model_isic(x_isic)
|
|
|
25 |
|
26 |
+
print("🔍 Claves de salida de model_isic:", preds_isic_dict.keys())
|
|
|
|
|
27 |
|
28 |
+
key = list(preds_isic_dict.keys())[0]
|
29 |
+
preds_isic = preds_isic_dict[key].numpy()[0]
|
30 |
+
pred_idx_isic = int(np.argmax(preds_isic))
|
31 |
+
pred_class_isic = CLASSES[pred_idx_isic]
|
32 |
+
confidence_isic = preds_isic[pred_idx_isic]
|
33 |
|
34 |
+
# Gráfico ViT
|
35 |
+
colors_bars = [RISK_LEVELS[i]['color'] for i in range(7)]
|
36 |
+
fig, ax = plt.subplots(figsize=(8, 3))
|
37 |
+
ax.bar(CLASSES, probs_vit*100, color=colors_bars)
|
38 |
+
ax.set_title("Probabilidad ViT por tipo de lesión")
|
39 |
+
ax.set_ylabel("Probabilidad (%)")
|
40 |
+
ax.set_xticks(np.arange(len(CLASSES)))
|
41 |
+
ax.set_xticklabels(CLASSES, rotation=45, ha='right')
|
42 |
+
ax.grid(axis='y', alpha=0.2)
|
43 |
+
plt.tight_layout()
|
44 |
+
buf = io.BytesIO()
|
45 |
+
plt.savefig(buf, format="png")
|
46 |
+
plt.close(fig)
|
47 |
+
img_bytes = buf.getvalue()
|
48 |
+
img_b64 = base64.b64encode(img_bytes).decode("utf-8")
|
49 |
+
html_chart = f'<img src="data:image/png;base64,{img_b64}" style="max-width:100%"/>'
|
50 |
|
51 |
+
# Informe HTML con los 4 modelos
|
52 |
+
informe = f"""
|
53 |
+
<div style="font-family:sans-serif; max-width:800px; margin:auto">
|
54 |
+
<h2>🧪 Diagnóstico por 4 modelos de IA</h2>
|
55 |
+
<table style="border-collapse: collapse; width:100%; font-size:16px">
|
56 |
+
<tr><th style="text-align:left">🔍 Modelo</th><th>Resultado</th><th>Confianza</th></tr>
|
57 |
+
<tr><td>🧠 ViT (transformer)</td><td><b>{pred_class_vit}</b></td><td>{confidence_vit:.1%}</td></tr>
|
58 |
+
<tr><td>🧬 Fast.ai (clasificación)</td><td><b>{pred_fast_type}</b></td><td>N/A</td></tr>
|
59 |
+
<tr><td>⚠️ Fast.ai (malignidad)</td><td><b>{"Maligno" if prob_malignant > 0.5 else "Benigno"}</b></td><td>{prob_malignant:.1%}</td></tr>
|
60 |
+
<tr><td>🔬 ISIC TensorFlow</td><td><b>{pred_class_isic}</b></td><td>{confidence_isic:.1%}</td></tr>
|
61 |
+
</table>
|
62 |
+
<br>
|
63 |
+
<b>🩺 Recomendación automática:</b><br>
|
64 |
+
"""
|
65 |
|
66 |
+
cancer_risk_score = sum(probs_vit[i] * RISK_LEVELS[i]['weight'] for i in range(7))
|
67 |
+
if prob_malignant > 0.7 or cancer_risk_score > 0.6:
|
68 |
+
informe += "🚨 <b>CRÍTICO</b> – Derivación urgente a oncología dermatológica"
|
69 |
+
elif prob_malignant > 0.4 or cancer_risk_score > 0.4:
|
70 |
+
informe += "⚠️ <b>ALTO RIESGO</b> – Consulta con dermatólogo en 7 días"
|
71 |
+
elif cancer_risk_score > 0.2:
|
72 |
+
informe += "📋 <b>RIESGO MODERADO</b> – Evaluación programada (2-4 semanas)"
|
73 |
+
else:
|
74 |
+
informe += "✅ <b>BAJO RIESGO</b> – Seguimiento de rutina (3-6 meses)"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
informe += "</div>"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
return informe, html_chart
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
except Exception as e:
|
81 |
+
print("🔴 ERROR en analizar_lesion_combined:")
|
82 |
+
print(str(e))
|
83 |
+
traceback.print_exc()
|
84 |
+
return f"<b>Error interno:</b> {str(e)}", ""
|
85 |
|
|