LoloSemper commited on
Commit
2b23c99
·
verified ·
1 Parent(s): b99548a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +73 -67
app.py CHANGED
@@ -1,79 +1,85 @@
 
 
1
  def analizar_lesion_combined(img):
2
- # Convertir imagen para Fastai
3
- img_fastai = PILImage.create(img)
 
 
 
 
 
 
 
 
 
 
4
 
5
- # ViT prediction
6
- inputs = feature_extractor(img, return_tensors="pt")
7
- with torch.no_grad():
8
- outputs = model_vit(**inputs)
9
- probs_vit = outputs.logits.softmax(dim=-1).cpu().numpy()[0]
10
- pred_idx_vit = int(np.argmax(probs_vit))
11
- pred_class_vit = CLASSES[pred_idx_vit]
12
- confidence_vit = probs_vit[pred_idx_vit]
13
 
14
- # Fast.ai models
15
- pred_fast_malignant, _, probs_fast_mal = model_malignancy.predict(img_fastai)
16
- prob_malignant = float(probs_fast_mal[1]) # índice 1 = maligno
17
- pred_fast_type, _, probs_fast_type = model_norm2000.predict(img_fastai)
18
 
19
- # Modelo TensorFlow ISIC (usando TFSMLayer)
20
- x_isic = preprocess_image_isic(img)
21
- preds_isic_dict = model_isic(x_isic) # devuelve dict con tensores
22
 
23
- # DEBUG: imprime claves para saber cuál usar
24
- print("Claves de salida de model_isic:", preds_isic_dict.keys())
 
 
 
25
 
26
- # Por ejemplo, si la clave correcta es 'outputs', cámbiala aquí:
27
- # Si sólo hay una clave, la usamos directamente:
28
- key = list(preds_isic_dict.keys())[0]
29
- preds_isic = preds_isic_dict[key].numpy()[0]
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
- pred_idx_isic = int(np.argmax(preds_isic))
32
- pred_class_isic = CLASSES[pred_idx_isic]
33
- confidence_isic = preds_isic[pred_idx_isic]
 
 
 
 
 
 
 
 
 
 
 
34
 
35
- # Gráfico ViT
36
- colors_bars = [RISK_LEVELS[i]['color'] for i in range(7)]
37
- fig, ax = plt.subplots(figsize=(8, 3))
38
- ax.bar(CLASSES, probs_vit*100, color=colors_bars)
39
- ax.set_title("Probabilidad ViT por tipo de lesión")
40
- ax.set_ylabel("Probabilidad (%)")
41
- ax.set_xticks(np.arange(len(CLASSES)))
42
- ax.set_xticklabels(CLASSES, rotation=45, ha='right')
43
- ax.grid(axis='y', alpha=0.2)
44
- plt.tight_layout()
45
- buf = io.BytesIO()
46
- plt.savefig(buf, format="png")
47
- plt.close(fig)
48
- img_bytes = buf.getvalue()
49
- img_b64 = base64.b64encode(img_bytes).decode("utf-8")
50
- html_chart = f'<img src="data:image/png;base64,{img_b64}" style="max-width:100%"/>'
51
 
52
- # Informe HTML con los 4 modelos
53
- informe = f"""
54
- <div style="font-family:sans-serif; max-width:800px; margin:auto">
55
- <h2>🧪 Diagnóstico por 4 modelos de IA</h2>
56
- <table style="border-collapse: collapse; width:100%; font-size:16px">
57
- <tr><th style="text-align:left">🔍 Modelo</th><th>Resultado</th><th>Confianza</th></tr>
58
- <tr><td>🧠 ViT (transformer)</td><td><b>{pred_class_vit}</b></td><td>{confidence_vit:.1%}</td></tr>
59
- <tr><td>🧬 Fast.ai (clasificación)</td><td><b>{pred_fast_type}</b></td><td>N/A</td></tr>
60
- <tr><td>⚠️ Fast.ai (malignidad)</td><td><b>{"Maligno" if prob_malignant > 0.5 else "Benigno"}</b></td><td>{prob_malignant:.1%}</td></tr>
61
- <tr><td>🔬 ISIC TensorFlow</td><td><b>{pred_class_isic}</b></td><td>{confidence_isic:.1%}</td></tr>
62
- </table>
63
- <br>
64
- <b>🩺 Recomendación automática:</b><br>
65
- """
66
 
67
- cancer_risk_score = sum(probs_vit[i] * RISK_LEVELS[i]['weight'] for i in range(7))
68
- if prob_malignant > 0.7 or cancer_risk_score > 0.6:
69
- informe += "🚨 <b>CRÍTICO</b> – Derivación urgente a oncología dermatológica"
70
- elif prob_malignant > 0.4 or cancer_risk_score > 0.4:
71
- informe += "⚠️ <b>ALTO RIESGO</b> – Consulta con dermatólogo en 7 días"
72
- elif cancer_risk_score > 0.2:
73
- informe += "📋 <b>RIESGO MODERADO</b> – Evaluación programada (2-4 semanas)"
74
- else:
75
- informe += "✅ <b>BAJO RIESGO</b> – Seguimiento de rutina (3-6 meses)"
76
 
77
- informe += "</div>"
 
 
 
 
78
 
79
- return informe, html_chart
 
1
+ import traceback # Asegúrate de tener esto al inicio de tu script
2
+
3
  def analizar_lesion_combined(img):
4
+ try:
5
+ # Convertir imagen para Fastai
6
+ img_fastai = PILImage.create(img)
7
+
8
+ # ViT prediction
9
+ inputs = feature_extractor(img, return_tensors="pt")
10
+ with torch.no_grad():
11
+ outputs = model_vit(**inputs)
12
+ probs_vit = outputs.logits.softmax(dim=-1).cpu().numpy()[0]
13
+ pred_idx_vit = int(np.argmax(probs_vit))
14
+ pred_class_vit = CLASSES[pred_idx_vit]
15
+ confidence_vit = probs_vit[pred_idx_vit]
16
 
17
+ # Fast.ai models
18
+ pred_fast_malignant, _, probs_fast_mal = model_malignancy.predict(img_fastai)
19
+ prob_malignant = float(probs_fast_mal[1]) # índice 1 = maligno
20
+ pred_fast_type, _, probs_fast_type = model_norm2000.predict(img_fastai)
 
 
 
 
21
 
22
+ # Modelo TensorFlow ISIC (usando TFSMLayer)
23
+ x_isic = preprocess_image_isic(img)
24
+ preds_isic_dict = model_isic(x_isic)
 
25
 
26
+ print("🔍 Claves de salida de model_isic:", preds_isic_dict.keys())
 
 
27
 
28
+ key = list(preds_isic_dict.keys())[0]
29
+ preds_isic = preds_isic_dict[key].numpy()[0]
30
+ pred_idx_isic = int(np.argmax(preds_isic))
31
+ pred_class_isic = CLASSES[pred_idx_isic]
32
+ confidence_isic = preds_isic[pred_idx_isic]
33
 
34
+ # Gráfico ViT
35
+ colors_bars = [RISK_LEVELS[i]['color'] for i in range(7)]
36
+ fig, ax = plt.subplots(figsize=(8, 3))
37
+ ax.bar(CLASSES, probs_vit*100, color=colors_bars)
38
+ ax.set_title("Probabilidad ViT por tipo de lesión")
39
+ ax.set_ylabel("Probabilidad (%)")
40
+ ax.set_xticks(np.arange(len(CLASSES)))
41
+ ax.set_xticklabels(CLASSES, rotation=45, ha='right')
42
+ ax.grid(axis='y', alpha=0.2)
43
+ plt.tight_layout()
44
+ buf = io.BytesIO()
45
+ plt.savefig(buf, format="png")
46
+ plt.close(fig)
47
+ img_bytes = buf.getvalue()
48
+ img_b64 = base64.b64encode(img_bytes).decode("utf-8")
49
+ html_chart = f'<img src="data:image/png;base64,{img_b64}" style="max-width:100%"/>'
50
 
51
+ # Informe HTML con los 4 modelos
52
+ informe = f"""
53
+ <div style="font-family:sans-serif; max-width:800px; margin:auto">
54
+ <h2>🧪 Diagnóstico por 4 modelos de IA</h2>
55
+ <table style="border-collapse: collapse; width:100%; font-size:16px">
56
+ <tr><th style="text-align:left">🔍 Modelo</th><th>Resultado</th><th>Confianza</th></tr>
57
+ <tr><td>🧠 ViT (transformer)</td><td><b>{pred_class_vit}</b></td><td>{confidence_vit:.1%}</td></tr>
58
+ <tr><td>🧬 Fast.ai (clasificación)</td><td><b>{pred_fast_type}</b></td><td>N/A</td></tr>
59
+ <tr><td>⚠️ Fast.ai (malignidad)</td><td><b>{"Maligno" if prob_malignant > 0.5 else "Benigno"}</b></td><td>{prob_malignant:.1%}</td></tr>
60
+ <tr><td>🔬 ISIC TensorFlow</td><td><b>{pred_class_isic}</b></td><td>{confidence_isic:.1%}</td></tr>
61
+ </table>
62
+ <br>
63
+ <b>🩺 Recomendación automática:</b><br>
64
+ """
65
 
66
+ cancer_risk_score = sum(probs_vit[i] * RISK_LEVELS[i]['weight'] for i in range(7))
67
+ if prob_malignant > 0.7 or cancer_risk_score > 0.6:
68
+ informe += "🚨 <b>CRÍTICO</b> – Derivación urgente a oncología dermatológica"
69
+ elif prob_malignant > 0.4 or cancer_risk_score > 0.4:
70
+ informe += "⚠️ <b>ALTO RIESGO</b> Consulta con dermatólogo en 7 días"
71
+ elif cancer_risk_score > 0.2:
72
+ informe += "📋 <b>RIESGO MODERADO</b> – Evaluación programada (2-4 semanas)"
73
+ else:
74
+ informe += "✅ <b>BAJO RIESGO</b> – Seguimiento de rutina (3-6 meses)"
 
 
 
 
 
 
 
75
 
76
+ informe += "</div>"
 
 
 
 
 
 
 
 
 
 
 
 
 
77
 
78
+ return informe, html_chart
 
 
 
 
 
 
 
 
79
 
80
+ except Exception as e:
81
+ print("🔴 ERROR en analizar_lesion_combined:")
82
+ print(str(e))
83
+ traceback.print_exc()
84
+ return f"<b>Error interno:</b> {str(e)}", ""
85