Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -333,9 +333,11 @@ def create_probability_chart(predictions, consensus_class):
|
|
333 |
if predictions:
|
334 |
# Obtener probabilidades promedio
|
335 |
avg_probs = np.zeros(7)
|
336 |
-
for
|
|
|
|
|
337 |
avg_probs += pred['probabilities']
|
338 |
-
avg_probs /= len(
|
339 |
|
340 |
colors = ['#ff6b35' if i in MALIGNANT_INDICES else '#44ff44' for i in range(7)]
|
341 |
bars = ax1.bar(range(7), avg_probs, color=colors, alpha=0.8)
|
@@ -360,16 +362,17 @@ def create_probability_chart(predictions, consensus_class):
|
|
360 |
f'{height:.2%}', ha='center', va='bottom', fontsize=9)
|
361 |
|
362 |
# Gráfico 2: Confianza por modelo
|
363 |
-
|
364 |
-
|
|
|
365 |
|
366 |
-
colors_conf = ['#ff6b35' if pred['is_malignant'] else '#44ff44' for pred in
|
367 |
-
bars2 = ax2.bar(range(len(
|
368 |
|
369 |
ax2.set_xlabel('Modelos')
|
370 |
ax2.set_ylabel('Confianza')
|
371 |
ax2.set_title('🎯 Confianza por Modelo')
|
372 |
-
ax2.set_xticks(range(len(
|
373 |
ax2.set_xticklabels(model_names, rotation=45)
|
374 |
ax2.grid(True, alpha=0.3)
|
375 |
ax2.set_ylim(0, 1)
|
@@ -394,8 +397,70 @@ def create_probability_chart(predictions, consensus_class):
|
|
394 |
except Exception as e:
|
395 |
print(f"Error creando gráfico: {e}")
|
396 |
return "<p>❌ Error generando gráfico de probabilidades</p>"
|
397 |
-
|
|
|
|
|
398 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
399 |
# Convertir a RGB si es necesario
|
400 |
if img.mode != 'RGB':
|
401 |
img = img.convert('RGB')
|
@@ -404,9 +469,10 @@ def create_probability_chart(predictions, consensus_class):
|
|
404 |
|
405 |
# Obtener predicciones de todos los modelos cargados
|
406 |
for model_name, model_data in loaded_models.items():
|
407 |
-
|
408 |
-
|
409 |
-
|
|
|
410 |
|
411 |
if not predictions:
|
412 |
return "<h3>❌ Error</h3><p>No se pudieron obtener predicciones de ningún modelo.</p>"
|
@@ -547,125 +613,10 @@ def create_probability_chart(predictions, consensus_class):
|
|
547 |
</div>
|
548 |
"""
|
549 |
|
550 |
-
# Generar visualizaciones
|
551 |
-
probability_chart = create_probability_chart(predictions, consensus_class)
|
552 |
-
heatmap = create_heatmap(predictions)
|
553 |
-
|
554 |
-
# Generar HTML del reporte COMPLETO
|
555 |
-
html_report = f"""
|
556 |
-
<div style="font-family: Arial, sans-serif; max-width: 1200px; margin: 0 auto;">
|
557 |
-
<h2 style="color: #2c3e50; text-align: center;">🏥 Análisis Completo de Lesión Cutánea</h2>
|
558 |
-
|
559 |
-
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; padding: 20px; border-radius: 10px; margin: 20px 0;">
|
560 |
-
<h3 style="margin: 0; text-align: center;">📋 Resultado de Consenso</h3>
|
561 |
-
<p style="font-size: 18px; text-align: center; margin: 10px 0;"><strong>{consensus_class}</strong></p>
|
562 |
-
<p style="text-align: center; margin: 5px 0;">Confianza Promedio: <strong>{avg_confidence:.1%}</strong></p>
|
563 |
-
<p style="text-align: center; margin: 5px 0;">Consenso: <strong>{class_votes[consensus_class]}/{len(predictions)} modelos</strong></p>
|
564 |
-
</div>
|
565 |
-
|
566 |
-
<div style="background: {risk_info['color']}; color: white; padding: 15px; border-radius: 8px; margin: 15px 0;">
|
567 |
-
<h4 style="margin: 0;">⚠️ Nivel de Riesgo: {risk_info['level']}</h4>
|
568 |
-
<p style="margin: 5px 0;"><strong>{risk_info['urgency']}</strong></p>
|
569 |
-
<p style="margin: 5px 0;">Tipo: {'🔴 Potencialmente maligna' if is_malignant else '🟢 Probablemente benigna'}</p>
|
570 |
-
</div>
|
571 |
-
|
572 |
-
<div style="background: #e3f2fd; padding: 15px; border-radius: 8px; margin: 15px 0;">
|
573 |
-
<h4 style="color: #1976d2;">🤖 Resultados Individuales por Modelo</h4>
|
574 |
-
"""
|
575 |
-
|
576 |
-
# RESULTADOS INDIVIDUALES DETALLADOS
|
577 |
-
for i, pred in enumerate(predictions, 1):
|
578 |
-
if pred['success']:
|
579 |
-
model_risk = RISK_LEVELS[pred['predicted_idx']]
|
580 |
-
malignant_status = "🔴 Maligna" if pred['is_malignant'] else "🟢 Benigna"
|
581 |
-
|
582 |
-
html_report += f"""
|
583 |
-
<div style="margin: 15px 0; padding: 15px; background: white; border-radius: 8px; border-left: 5px solid {'#ff6b35' if pred['is_malignant'] else '#44ff44'}; box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
|
584 |
-
<div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 10px;">
|
585 |
-
<h5 style="margin: 0; color: #333;">#{i}. {pred['model']}</h5>
|
586 |
-
<span style="background: {model_risk['color']}; color: white; padding: 4px 8px; border-radius: 4px; font-size: 12px;">{model_risk['level']}</span>
|
587 |
-
</div>
|
588 |
-
|
589 |
-
<div style="display: grid; grid-template-columns: 1fr 1fr 1fr; gap: 10px; font-size: 14px;">
|
590 |
-
<div><strong>Diagnóstico:</strong><br>{pred['class']}</div>
|
591 |
-
<div><strong>Confianza:</strong><br>{pred['confidence']:.1%}</div>
|
592 |
-
<div><strong>Clasificación:</strong><br>{malignant_status}</div>
|
593 |
-
</div>
|
594 |
-
|
595 |
-
<div style="margin-top: 10px;">
|
596 |
-
<strong>Top 3 Probabilidades:</strong><br>
|
597 |
-
<div style="font-size: 12px; color: #666;">
|
598 |
-
"""
|
599 |
-
|
600 |
-
# Top 3 probabilidades para este modelo
|
601 |
-
top_indices = np.argsort(pred['probabilities'])[-3:][::-1]
|
602 |
-
for idx in top_indices:
|
603 |
-
prob = pred['probabilities'][idx]
|
604 |
-
if prob > 0.01: # Solo mostrar si > 1%
|
605 |
-
html_report += f"• {CLASSES[idx].split('(')[1].rstrip(')')}: {prob:.1%}<br>"
|
606 |
-
|
607 |
-
html_report += f"""
|
608 |
-
</div>
|
609 |
-
<div style="margin-top: 8px; font-size: 12px; color: #888;">
|
610 |
-
<strong>Recomendación:</strong> {model_risk['urgency']}
|
611 |
-
</div>
|
612 |
-
</div>
|
613 |
-
</div>
|
614 |
-
"""
|
615 |
-
else:
|
616 |
-
html_report += f"""
|
617 |
-
<div style="margin: 10px 0; padding: 10px; background: #ffebee; border-radius: 5px; border-left: 4px solid #f44336;">
|
618 |
-
<strong>❌ {pred['model']}</strong><br>
|
619 |
-
<span style="color: #d32f2f;">Error: {pred.get('error', 'Desconocido')}</span>
|
620 |
-
</div>
|
621 |
-
"""
|
622 |
-
|
623 |
-
html_report += f"""
|
624 |
-
</div>
|
625 |
-
|
626 |
-
<div style="background: #f8f9fa; padding: 15px; border-radius: 8px; margin: 15px 0;">
|
627 |
-
<h4 style="color: #495057;">📊 Análisis Estadístico</h4>
|
628 |
-
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 15px;">
|
629 |
-
<div>
|
630 |
-
<strong>Modelos Activos:</strong> {len([p for p in predictions if p['success']])}/{len(predictions)}<br>
|
631 |
-
<strong>Acuerdo Total:</strong> {class_votes[consensus_class]}/{len([p for p in predictions if p['success']])}<br>
|
632 |
-
<strong>Confianza Máxima:</strong> {max([p['confidence'] for p in predictions if p['success']]):.1%}
|
633 |
-
</div>
|
634 |
-
<div>
|
635 |
-
<strong>Diagnósticos Malignos:</strong> {len([p for p in predictions if p.get('success') and p.get('is_malignant')])}<br>
|
636 |
-
<strong>Diagnósticos Benignos:</strong> {len([p for p in predictions if p.get('success') and not p.get('is_malignant')])}<br>
|
637 |
-
<strong>Consenso Maligno:</strong> {'Sí' if is_malignant else 'No'}
|
638 |
-
</div>
|
639 |
-
</div>
|
640 |
-
</div>
|
641 |
-
|
642 |
-
<div style="background: #ffffff; padding: 15px; border-radius: 8px; margin: 15px 0; border: 1px solid #ddd;">
|
643 |
-
<h4 style="color: #333;">📈 Gráficos de Análisis</h4>
|
644 |
-
{probability_chart}
|
645 |
-
</div>
|
646 |
-
|
647 |
-
<div style="background: #ffffff; padding: 15px; border-radius: 8px; margin: 15px 0; border: 1px solid #ddd;">
|
648 |
-
<h4 style="color: #333;">🔥 Mapa de Calor de Probabilidades</h4>
|
649 |
-
{heatmap}
|
650 |
-
</div>
|
651 |
-
|
652 |
-
<div style="background: #fff3e0; padding: 15px; border-radius: 8px; margin: 15px 0; border: 1px solid #ff9800;">
|
653 |
-
<h4 style="color: #f57c00;">⚠️ Advertencia Médica</h4>
|
654 |
-
<p style="margin: 5px 0;">Este análisis es solo una herramienta de apoyo diagnóstico basada en IA.</p>
|
655 |
-
<p style="margin: 5px 0;"><strong>Siempre consulte con un dermatólogo profesional para un diagnóstico definitivo.</strong></p>
|
656 |
-
<p style="margin: 5px 0;">No utilice esta información como único criterio para decisiones médicas.</p>
|
657 |
-
<p style="margin: 5px 0;"><em>Los resultados individuales de cada modelo se muestran para transparencia y análisis comparativo.</em></p>
|
658 |
-
</div>
|
659 |
-
</div>
|
660 |
-
"""
|
661 |
-
|
662 |
return html_report
|
663 |
|
664 |
except Exception as e:
|
665 |
return f"<h3>❌ Error en el análisis</h3><p>Error técnico: {str(e)}</p><p>Por favor, intente con otra imagen.</p>"
|
666 |
-
|
667 |
-
except Exception as e:
|
668 |
-
return f"<h3>❌ Error en el análisis</h3><p>Error técnico: {str(e)}</p><p>Por favor, intente con otra imagen.</p>"
|
669 |
|
670 |
# Configuración de Gradio
|
671 |
def create_interface():
|
|
|
333 |
if predictions:
|
334 |
# Obtener probabilidades promedio
|
335 |
avg_probs = np.zeros(7)
|
336 |
+
valid_predictions = [p for p in predictions if p.get('success', False)]
|
337 |
+
|
338 |
+
for pred in valid_predictions:
|
339 |
avg_probs += pred['probabilities']
|
340 |
+
avg_probs /= len(valid_predictions)
|
341 |
|
342 |
colors = ['#ff6b35' if i in MALIGNANT_INDICES else '#44ff44' for i in range(7)]
|
343 |
bars = ax1.bar(range(7), avg_probs, color=colors, alpha=0.8)
|
|
|
362 |
f'{height:.2%}', ha='center', va='bottom', fontsize=9)
|
363 |
|
364 |
# Gráfico 2: Confianza por modelo
|
365 |
+
valid_predictions = [p for p in predictions if p.get('success', False)]
|
366 |
+
model_names = [pred['model'].split(' ')[1] if len(pred['model'].split(' ')) > 1 else pred['model'] for pred in valid_predictions]
|
367 |
+
confidences = [pred['confidence'] for pred in valid_predictions]
|
368 |
|
369 |
+
colors_conf = ['#ff6b35' if pred['is_malignant'] else '#44ff44' for pred in valid_predictions]
|
370 |
+
bars2 = ax2.bar(range(len(valid_predictions)), confidences, color=colors_conf, alpha=0.8)
|
371 |
|
372 |
ax2.set_xlabel('Modelos')
|
373 |
ax2.set_ylabel('Confianza')
|
374 |
ax2.set_title('🎯 Confianza por Modelo')
|
375 |
+
ax2.set_xticks(range(len(valid_predictions)))
|
376 |
ax2.set_xticklabels(model_names, rotation=45)
|
377 |
ax2.grid(True, alpha=0.3)
|
378 |
ax2.set_ylim(0, 1)
|
|
|
397 |
except Exception as e:
|
398 |
print(f"Error creando gráfico: {e}")
|
399 |
return "<p>❌ Error generando gráfico de probabilidades</p>"
|
400 |
+
|
401 |
+
def create_heatmap(predictions):
|
402 |
+
"""Crear mapa de calor de probabilidades por modelo"""
|
403 |
try:
|
404 |
+
valid_predictions = [p for p in predictions if p.get('success', False)]
|
405 |
+
|
406 |
+
if not valid_predictions:
|
407 |
+
return "<p>No hay datos suficientes para el mapa de calor</p>"
|
408 |
+
|
409 |
+
# Crear matriz de probabilidades
|
410 |
+
prob_matrix = np.array([pred['probabilities'] for pred in valid_predictions])
|
411 |
+
|
412 |
+
# Crear figura
|
413 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
414 |
+
|
415 |
+
# Crear mapa de calor
|
416 |
+
im = ax.imshow(prob_matrix, cmap='RdYlGn_r', aspect='auto', vmin=0, vmax=1)
|
417 |
+
|
418 |
+
# Configurar etiquetas
|
419 |
+
ax.set_xticks(np.arange(7))
|
420 |
+
ax.set_yticks(np.arange(len(valid_predictions)))
|
421 |
+
ax.set_xticklabels([cls.split('(')[1].rstrip(')') for cls in CLASSES])
|
422 |
+
ax.set_yticklabels([pred['model'] for pred in valid_predictions])
|
423 |
+
|
424 |
+
# Rotar etiquetas del eje x
|
425 |
+
plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor")
|
426 |
+
|
427 |
+
# Añadir valores en las celdas
|
428 |
+
for i in range(len(valid_predictions)):
|
429 |
+
for j in range(7):
|
430 |
+
text = ax.text(j, i, f'{prob_matrix[i, j]:.2f}',
|
431 |
+
ha="center", va="center", color="white" if prob_matrix[i, j] > 0.5 else "black",
|
432 |
+
fontsize=8)
|
433 |
+
|
434 |
+
ax.set_title("Mapa de Calor: Probabilidades por Modelo y Clase")
|
435 |
+
fig.tight_layout()
|
436 |
+
|
437 |
+
# Añadir barra de color
|
438 |
+
cbar = plt.colorbar(im, ax=ax)
|
439 |
+
cbar.set_label('Probabilidad', rotation=270, labelpad=15)
|
440 |
+
|
441 |
+
# Convertir a base64
|
442 |
+
buf = io.BytesIO()
|
443 |
+
plt.savefig(buf, format='png', dpi=300, bbox_inches='tight')
|
444 |
+
buf.seek(0)
|
445 |
+
heatmap_b64 = base64.b64encode(buf.getvalue()).decode()
|
446 |
+
plt.close()
|
447 |
+
|
448 |
+
return f'<img src="data:image/png;base64,{heatmap_b64}" style="width:100%; max-width:800px;">'
|
449 |
+
|
450 |
+
except Exception as e:
|
451 |
+
print(f"Error creando mapa de calor: {e}")
|
452 |
+
return "<p>❌ Error generando mapa de calor</p>"
|
453 |
+
|
454 |
+
def analizar_lesion(img):
|
455 |
+
"""Función principal para analizar la lesión"""
|
456 |
+
try:
|
457 |
+
if img is None:
|
458 |
+
return "<h3>⚠️ Por favor, carga una imagen</h3>"
|
459 |
+
|
460 |
+
# Verificar que hay modelos cargados
|
461 |
+
if not loaded_models or all(m.get('type') == 'dummy' for m in loaded_models.values()):
|
462 |
+
return "<h3>❌ Error del Sistema</h3><p>No hay modelos disponibles. Por favor, recarga la aplicación.</p>"
|
463 |
+
|
464 |
# Convertir a RGB si es necesario
|
465 |
if img.mode != 'RGB':
|
466 |
img = img.convert('RGB')
|
|
|
469 |
|
470 |
# Obtener predicciones de todos los modelos cargados
|
471 |
for model_name, model_data in loaded_models.items():
|
472 |
+
if model_data.get('type') != 'dummy':
|
473 |
+
pred = predict_with_model(img, model_data)
|
474 |
+
if pred.get('success', False):
|
475 |
+
predictions.append(pred)
|
476 |
|
477 |
if not predictions:
|
478 |
return "<h3>❌ Error</h3><p>No se pudieron obtener predicciones de ningún modelo.</p>"
|
|
|
613 |
</div>
|
614 |
"""
|
615 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
616 |
return html_report
|
617 |
|
618 |
except Exception as e:
|
619 |
return f"<h3>❌ Error en el análisis</h3><p>Error técnico: {str(e)}</p><p>Por favor, intente con otra imagen.</p>"
|
|
|
|
|
|
|
620 |
|
621 |
# Configuración de Gradio
|
622 |
def create_interface():
|