File size: 2,030 Bytes
cdc152a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import torch
from transformers import ViTImageProcessor, ViTForImageClassification, pipeline
from fastai.learner import load_learner
from fastai.vision.core import PILImage
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
import gradio as gr
import io
import base64

# 馃敼 Cargar modelo ViT desde Hugging Face (HAM10000)
MODEL_NAME = "ahishamm/vit-base-HAM-10000-sharpened-patch-32"
feature_extractor = ViTImageProcessor.from_pretrained(MODEL_NAME)
model_vit = ViTForImageClassification.from_pretrained(MODEL_NAME)
model_vit.eval()

# 馃敼 Cargar modelos Fast.ai
model_malignancy = load_learner("ada_learn_malben.pkl")
model_norm2000 = load_learner("ada_learn_skin_norm2000.pkl")

# 馃敼 Cargar modelo ISIC 7 clases
classifier_isic7 = pipeline("image-classification", model="Anwarkh1/Skin_Cancer-Image_Classification")

# 馃敼 Clases ViT y niveles de riesgo
CLASSES = [
    "Queratosis act铆nica / Bowen", "Carcinoma c茅lulas basales",
    "Lesi贸n querat贸sica benigna", "Dermatofibroma",
    "Melanoma maligno", "Nevus melanoc铆tico", "Lesi贸n vascular"
]
RISK_LEVELS = {
    0: {'level': 'Moderado', 'color': '#ffaa00', 'weight': 0.6},
    1: {'level': 'Alto', 'color': '#ff4444', 'weight': 0.8},
    2: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1},
    3: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1},
    4: {'level': 'Cr铆tico', 'color': '#cc0000', 'weight': 1.0},
    5: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1},
    6: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1}
}

def analizar_lesion_combined(img):
    img_fastai = PILImage.create(img)

    # 馃敼 ViT transformer (HAM10000)
    inputs = feature_extractor(img, return_tensors="pt")
    with torch.no_grad():
        outputs = model_vit(**inputs)
        probs_vit = outputs.logits.softmax(dim=-1).cpu().numpy()[0]
    pred_idx_vit = int(np.argmax(probs_vit))
    pred_class_vit = CLASSES[pred_idx_vit]
    confidence_vit = probs_vit[pred_idx_vit]

    # 馃敼 Fast.ai modelos
    pred_fast_malignant, _, pr_