LinDee's picture
Upload 4 files
35fae64 verified
raw
history blame contribute delete
971 Bytes
import gradio as gr
import pickle
import pandas as pd
from sklearn.metrics.pairwise import cosine_similarity
# Load model and dataset
with open("recommender_model.pkl", "rb") as f:
model = pickle.load(f)
posts_df = pd.read_csv("posts_cleaned.csv") # your full dataset with post content
post_embeddings = model["embeddings"] # precomputed post embeddings
vectorizer = model["vectorizer"] # for transforming user input
# Predict function
def recommend_from_input(user_text):
user_vec = vectorizer.encode([user_text])
sims = cosine_similarity(user_vec, post_embeddings)[0]
top_idxs = sims.argsort()[-5:][::-1]
top_posts = posts_df.iloc[top_idxs]["post_text"].tolist()
return "\n\n".join(top_posts)
# Gradio UI
interface = gr.Interface(
fn=recommend_from_input,
inputs="text",
outputs="text",
title="AI Content Recommender",
description="Enter a sample interest or post to receive recommendations"
)
interface.launch()