import gradio as gr from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch # 加载模型和 tokenizer model_name = "LilithHu/mbert-manipulative-detector" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) # 设置为评估模式 model.eval() # 设置运行设备 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # 标签名 labels = ["Non-manipulative / 非操纵性", "Manipulative / 操纵性"] # 推理函数 def classify(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device) with torch.no_grad(): outputs = model(**inputs) probs = torch.softmax(outputs.logits, dim=1) pred = torch.argmax(probs, dim=1).item() confidence = probs[0][pred].item() return f"🧠 预测 / Prediction: {labels[pred]}\n🔢 置信度 / Confidence: {confidence*100:.2f}%" # Gradio 界面 interface = gr.Interface( fn=classify, inputs=gr.Textbox(lines=4, placeholder="Enter text in English or Chinese... / 输入中文或英文句子"), outputs="text", title="🔍 Manipulative Language Detector / 操纵性语言识别器", description="🧪 输入英文或中文句子,系统将判断其是否包含操纵性语言。\nEnter a sentence in English or Chinese to detect if it's manipulative.", ) interface.launch()