linoyts HF Staff commited on
Commit
e00c914
Β·
verified Β·
1 Parent(s): 01d329d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -55
app.py CHANGED
@@ -11,8 +11,6 @@ from torchvision import transforms
11
  import random
12
  import imageio
13
  from controlnet_aux import CannyDetector
14
- # from image_gen_aux import DepthPreprocessor
15
- # import mediapipe as mp
16
  from PIL import Image
17
  import cv2
18
 
@@ -54,10 +52,6 @@ pipeline.load_lora_weights(
54
  )
55
  pipeline.set_adapters([CONTROL_LORAS["canny"]["adapter_name"]], adapter_weights=[1.0])
56
 
57
- # Initialize MediaPipe pose estimation
58
- # mp_drawing = mp.solutions.drawing_utils
59
- # mp_drawing_styles = mp.solutions.drawing_styles
60
- # mp_pose = mp.solutions.pose
61
 
62
  canny_processor = CannyDetector()
63
 
@@ -126,51 +120,6 @@ def process_video_for_canny(video, width, height):
126
 
127
  return canny_video
128
 
129
- @spaces.GPU()
130
- def process_video_for_pose(video):
131
- """
132
- Process video for pose control using MediaPipe pose estimation.
133
- Returns video frames with pose landmarks drawn on black background.
134
- """
135
- print("Processing video for pose control...")
136
- pose_video = []
137
-
138
- with mp_pose.Pose(
139
- static_image_mode=True,
140
- model_complexity=1,
141
- enable_segmentation=False,
142
- min_detection_confidence=0.5,
143
- min_tracking_confidence=0.5
144
- ) as pose:
145
-
146
- for frame in video:
147
- # Convert PIL image to numpy array
148
- frame_np = np.array(frame)
149
-
150
- # Convert RGB to BGR for MediaPipe
151
- frame_bgr = cv2.cvtColor(frame_np, cv2.COLOR_RGB2BGR)
152
-
153
- # Process the frame
154
- results = pose.process(frame_bgr)
155
-
156
- # Create black background with same dimensions
157
- pose_frame = np.zeros_like(frame_np)
158
-
159
- # Draw pose landmarks if detected
160
- if results.pose_landmarks:
161
- mp_drawing.draw_landmarks(
162
- pose_frame,
163
- results.pose_landmarks,
164
- mp_pose.POSE_CONNECTIONS,
165
- landmark_drawing_spec=mp_drawing_styles.get_default_pose_landmarks_style()
166
- )
167
-
168
- # Convert back to PIL Image
169
- pose_pil = Image.fromarray(pose_frame)
170
- pose_video.append(pose_pil)
171
-
172
- return pose_video
173
-
174
  def process_input_video(reference_video, width, height):
175
  """
176
  Process the input video for canny edges and return both processed video and preview.
@@ -203,10 +152,6 @@ def process_video_for_control(reference_video, control_type, width, height):
203
  if control_type == "canny":
204
  # This should not be called for canny since it's pre-processed
205
  processed_video = process_video_for_canny(video, width, height)
206
- elif control_type == "depth":
207
- processed_video = process_video_for_depth(video)
208
- elif control_type == "pose":
209
- processed_video = process_video_for_pose(video)
210
  else:
211
  processed_video = video
212
 
 
11
  import random
12
  import imageio
13
  from controlnet_aux import CannyDetector
 
 
14
  from PIL import Image
15
  import cv2
16
 
 
52
  )
53
  pipeline.set_adapters([CONTROL_LORAS["canny"]["adapter_name"]], adapter_weights=[1.0])
54
 
 
 
 
 
55
 
56
  canny_processor = CannyDetector()
57
 
 
120
 
121
  return canny_video
122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123
  def process_input_video(reference_video, width, height):
124
  """
125
  Process the input video for canny edges and return both processed video and preview.
 
152
  if control_type == "canny":
153
  # This should not be called for canny since it's pre-processed
154
  processed_video = process_video_for_canny(video, width, height)
 
 
 
 
155
  else:
156
  processed_video = video
157