Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -27,13 +27,6 @@ pipeline.to(device)
|
|
27 |
pipe_upsample.to(device)
|
28 |
pipeline.vae.enable_tiling()
|
29 |
|
30 |
-
canny_processor = CannyDetector()
|
31 |
-
|
32 |
-
# Initialize MediaPipe pose estimation
|
33 |
-
# mp_drawing = mp.solutions.drawing_utils
|
34 |
-
# mp_drawing_styles = mp.solutions.drawing_styles
|
35 |
-
# mp_pose = mp.solutions.pose
|
36 |
-
|
37 |
CONTROL_LORAS = {
|
38 |
"canny": {
|
39 |
"repo": "Lightricks/LTX-Video-ICLoRA-canny-13b-0.9.7",
|
@@ -60,6 +53,13 @@ pipeline.load_lora_weights(
|
|
60 |
)
|
61 |
pipeline.set_adapters([CONTROL_LORAS["canny"]["adapter_name"]], adapter_weights=[1.0])
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
@spaces.GPU()
|
64 |
def read_video(video) -> torch.Tensor:
|
65 |
"""
|
@@ -180,11 +180,12 @@ def process_video_for_control(reference_video, control_type):
|
|
180 |
processed_video = process_video_for_pose(video)
|
181 |
else:
|
182 |
processed_video = reference_video
|
183 |
-
fps = 24
|
184 |
-
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp2_file:
|
185 |
-
|
186 |
-
|
187 |
-
return output2_path
|
|
|
188 |
|
189 |
|
190 |
@spaces.GPU(duration=160)
|
@@ -224,7 +225,7 @@ def generate_video(
|
|
224 |
temporal_compression = pipeline.vae_temporal_compression_ratio
|
225 |
num_frames = ((num_frames - 1) // temporal_compression) * temporal_compression + 1
|
226 |
|
227 |
-
|
228 |
|
229 |
# Load the appropriate control LoRA and update state
|
230 |
# updated_lora_state = load_control_lora(control_type, current_lora_state)
|
|
|
27 |
pipe_upsample.to(device)
|
28 |
pipeline.vae.enable_tiling()
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
CONTROL_LORAS = {
|
31 |
"canny": {
|
32 |
"repo": "Lightricks/LTX-Video-ICLoRA-canny-13b-0.9.7",
|
|
|
53 |
)
|
54 |
pipeline.set_adapters([CONTROL_LORAS["canny"]["adapter_name"]], adapter_weights=[1.0])
|
55 |
|
56 |
+
# Initialize MediaPipe pose estimation
|
57 |
+
# mp_drawing = mp.solutions.drawing_utils
|
58 |
+
# mp_drawing_styles = mp.solutions.drawing_styles
|
59 |
+
# mp_pose = mp.solutions.pose
|
60 |
+
|
61 |
+
canny_processor = CannyDetector()
|
62 |
+
|
63 |
@spaces.GPU()
|
64 |
def read_video(video) -> torch.Tensor:
|
65 |
"""
|
|
|
180 |
processed_video = process_video_for_pose(video)
|
181 |
else:
|
182 |
processed_video = reference_video
|
183 |
+
# fps = 24
|
184 |
+
# with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp2_file:
|
185 |
+
# output2_path = tmp2_file.name
|
186 |
+
# export_to_video(processed_video, output2_path, fps=fps)
|
187 |
+
# return output2_path
|
188 |
+
return processed_video
|
189 |
|
190 |
|
191 |
@spaces.GPU(duration=160)
|
|
|
225 |
temporal_compression = pipeline.vae_temporal_compression_ratio
|
226 |
num_frames = ((num_frames - 1) // temporal_compression) * temporal_compression + 1
|
227 |
|
228 |
+
|
229 |
|
230 |
# Load the appropriate control LoRA and update state
|
231 |
# updated_lora_state = load_control_lora(control_type, current_lora_state)
|