Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -122,7 +122,8 @@ def process_video_for_canny(video, width, height):
|
|
122 |
|
123 |
return canny_video
|
124 |
|
125 |
-
def process_input_video(reference_video, width, height
|
|
|
126 |
"""
|
127 |
Process the input video for canny edges and return both processed video and preview.
|
128 |
"""
|
@@ -173,7 +174,7 @@ def generate_video(
|
|
173 |
seed=0,
|
174 |
randomize_seed=False,
|
175 |
control_type="canny",
|
176 |
-
progress=gr.Progress()
|
177 |
):
|
178 |
try:
|
179 |
# Initialize models if needed
|
@@ -195,7 +196,6 @@ def generate_video(
|
|
195 |
temporal_compression = pipeline.vae_temporal_compression_ratio
|
196 |
num_frames = ((num_frames - 1) // temporal_compression) * temporal_compression + 1
|
197 |
|
198 |
-
progress(0.1, desc="Preparing processed video...")
|
199 |
|
200 |
# Use pre-processed video frames if available (for canny), otherwise process on-demand
|
201 |
print("######## control_video ", control_video)
|
@@ -213,7 +213,6 @@ def generate_video(
|
|
213 |
processed_video = read_video(processed_video)
|
214 |
print(type(processed_video))
|
215 |
|
216 |
-
progress(0.2, desc="Preparing generation parameters...")
|
217 |
|
218 |
# Calculate downscaled dimensions
|
219 |
downscale_factor = 2 / 3
|
@@ -223,7 +222,6 @@ def generate_video(
|
|
223 |
downscaled_height, downscaled_width, pipeline.vae_temporal_compression_ratio
|
224 |
)
|
225 |
|
226 |
-
progress(0.3, desc="Generating video at lower resolution...")
|
227 |
|
228 |
# 1. Generate video at smaller resolution
|
229 |
latents = pipeline(
|
@@ -241,7 +239,6 @@ def generate_video(
|
|
241 |
output_type="latent",
|
242 |
).frames
|
243 |
|
244 |
-
progress(0.6, desc="Upscaling video...")
|
245 |
|
246 |
# 2. Upscale generated video
|
247 |
upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2
|
@@ -250,7 +247,6 @@ def generate_video(
|
|
250 |
output_type="latent"
|
251 |
).frames
|
252 |
|
253 |
-
progress(0.8, desc="Final denoising and processing...")
|
254 |
|
255 |
# 3. Denoise the upscaled video
|
256 |
final_video_frames_np = pipeline(
|
@@ -270,7 +266,6 @@ def generate_video(
|
|
270 |
output_type="np",
|
271 |
).frames[0]
|
272 |
|
273 |
-
progress(0.9, desc="Finalizing output...")
|
274 |
|
275 |
|
276 |
# Export to temporary file
|
@@ -281,8 +276,7 @@ def generate_video(
|
|
281 |
progress((frame_idx + 1) / len(video_uint8_frames), desc="Encoding video frames...")
|
282 |
writer.append_data(frame_data)
|
283 |
|
284 |
-
|
285 |
-
progress(1.0, desc="Complete!")
|
286 |
|
287 |
return output_filename, seed
|
288 |
|
|
|
122 |
|
123 |
return canny_video
|
124 |
|
125 |
+
def process_input_video(reference_video, width, height,
|
126 |
+
progress=gr.Progress(track_tqdm=True)):
|
127 |
"""
|
128 |
Process the input video for canny edges and return both processed video and preview.
|
129 |
"""
|
|
|
174 |
seed=0,
|
175 |
randomize_seed=False,
|
176 |
control_type="canny",
|
177 |
+
progress=gr.Progress(track_tqdm=True)
|
178 |
):
|
179 |
try:
|
180 |
# Initialize models if needed
|
|
|
196 |
temporal_compression = pipeline.vae_temporal_compression_ratio
|
197 |
num_frames = ((num_frames - 1) // temporal_compression) * temporal_compression + 1
|
198 |
|
|
|
199 |
|
200 |
# Use pre-processed video frames if available (for canny), otherwise process on-demand
|
201 |
print("######## control_video ", control_video)
|
|
|
213 |
processed_video = read_video(processed_video)
|
214 |
print(type(processed_video))
|
215 |
|
|
|
216 |
|
217 |
# Calculate downscaled dimensions
|
218 |
downscale_factor = 2 / 3
|
|
|
222 |
downscaled_height, downscaled_width, pipeline.vae_temporal_compression_ratio
|
223 |
)
|
224 |
|
|
|
225 |
|
226 |
# 1. Generate video at smaller resolution
|
227 |
latents = pipeline(
|
|
|
239 |
output_type="latent",
|
240 |
).frames
|
241 |
|
|
|
242 |
|
243 |
# 2. Upscale generated video
|
244 |
upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2
|
|
|
247 |
output_type="latent"
|
248 |
).frames
|
249 |
|
|
|
250 |
|
251 |
# 3. Denoise the upscaled video
|
252 |
final_video_frames_np = pipeline(
|
|
|
266 |
output_type="np",
|
267 |
).frames[0]
|
268 |
|
|
|
269 |
|
270 |
|
271 |
# Export to temporary file
|
|
|
276 |
progress((frame_idx + 1) / len(video_uint8_frames), desc="Encoding video frames...")
|
277 |
writer.append_data(frame_data)
|
278 |
|
279 |
+
|
|
|
280 |
|
281 |
return output_filename, seed
|
282 |
|