from transformers import Wav2Vec2ForCTC, AutoProcessor import torchaudio import torch import os import librosa hf_token = os.getenv("HUGGING_FACE_HUB_TOKEN") def read_audio_data(file): speech_array, sampling_rate = torchaudio.load(file, normalize = True) return speech_array, sampling_rate def load_model(): model_id = "Lguyogiro/w-apostrophe_wav2vec2-large-mms-1b-oji-adapterft" target_lang = "oji" processor = AutoProcessor.from_pretrained(model_id, target_lang=target_lang, use_auth_token=hf_token) model = Wav2Vec2ForCTC.from_pretrained(model_id, target_lang=target_lang, ignore_mismatched_sizes=True, use_safetensors=True, use_auth_token=hf_token) return processor, model def inference(processor, model, audio_path): audio, sampling_rate = librosa.load(audio_path, sr=16000) # Ensure the correct sampling rate inputs = processor(audio, sampling_rate=sampling_rate, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values).logits # Decode predicted tokens predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] #arr, rate = read_audio_data(audio_path) #inputs = processor(arr.squeeze().numpy(), sampling_rate=16_000, return_tensors="pt") #with torch.no_grad(): # outputs = model(**inputs).logits #ids = torch.argmax(outputs, dim=-1)[0] #transcription = processor.decode(ids) return transcription