Spaces:
Sleeping
Sleeping
from transformers import Wav2Vec2ForCTC, AutoProcessor | |
import torchaudio | |
import torch | |
import os | |
hf_token = os.getenv("HUGGING_FACE_HUB_TOKEN") | |
def read_audio_data(file): | |
speech_array, sampling_rate = torchaudio.load(file, normalize = True) | |
return speech_array, sampling_rate | |
def load_model(): | |
model_id = "Lguyogiro/wav2vec2-large-mms-1b-oji-adapterft" | |
target_lang = "oji" | |
processor = AutoProcessor.from_pretrained(model_id, target_lang=target_lang, use_auth_token=hf_token) | |
model = Wav2Vec2ForCTC.from_pretrained(model_id, target_lang=target_lang, ignore_mismatched_sizes=True, use_safetensors=True, use_auth_token=hf_token) | |
def inference(model, audio_path): | |
arr, rate = read_audio_data(audio_path) | |
inputs = processor(arr.squeeze().numpy(), sampling_rate=16_000, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model(**inputs).logits | |
ids = torch.argmax(outputs, dim=-1)[0] | |
transcription = processor.decode(ids) | |
return transcription | |