File size: 4,784 Bytes
faee479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import time
import datetime
import logging
import soundfile
import streamlit as st
from streamlit_webrtc import webrtc_streamer, AudioProcessorBase, WebRtcMode
import numpy as np
import pydub
from pathlib import Path

from asr import load_model, inference

LOG_DIR = "./logs"
DATA_DIR = "./data"
logger = logging.getLogger(__name__)


# Define a custom audio processor to handle microphone input
class AudioProcessor(AudioProcessorBase):
    def __init__(self):
        self.audio_data = []

    def recv_audio(self, frame):
        # Convert the audio frame to a NumPy array
        audio_array = np.frombuffer(frame.to_ndarray(), dtype=np.int16)
        self.audio_data.append(audio_array)
        return frame

    def get_audio_data(self):
        # Combine all captured audio data
        if self.audio_data:
            combined = np.concatenate(self.audio_data, axis=0)
            return combined
        return None


def upload_audio() -> Path:
    # Upload audio file
    uploaded_file = st.file_uploader("Choose a audio file(wav, mp3, flac)", type=['wav','mp3','flac'])
    if uploaded_file is not None:
        # Save audio file
        audio_data, samplerate = soundfile.read(uploaded_file)
        
        # Make save directory
        now = datetime.datetime.now()
        now_time = now.strftime('%Y-%m-%d-%H:%M:%S')
        audio_dir = Path(DATA_DIR) / f"{now_time}"
        audio_dir.mkdir(parents=True, exist_ok=True)
        
        audio_path = audio_dir / uploaded_file.name
        soundfile.write(audio_path, audio_data, samplerate)
        
        # Show audio file
        with open(audio_path, 'rb') as audio_file:
            audio_bytes = audio_file.read()
        
        st.audio(audio_bytes, format=uploaded_file.type)
        
        return audio_path

@st.cache_resource(show_spinner=False)
def call_load_model():
    generator = load_model()
    return generator

def main():
    st.header("Speech-to-Text app with streamlit")
    st.markdown(
        """
        This STT app is using a fine-tuned MMS ASR model.
        """
    )
    
    audio_path = upload_audio()
    logger.info(f"Uploaded audio file: {audio_path}")
    
    with st.spinner(text="Wait for loading ASR Model..."):
        generator = call_load_model()
    
    if audio_path is not None:
        start_time = time.time()
        with st.spinner(text='Wait for inference...'):
            output = inference(generator, audio_path)

        end_time = time.time()

        process_time = time.gmtime(end_time - start_time)
        process_time = time.strftime("%H hour %M min %S secs", process_time)

        st.success(f"Inference finished in {process_time}.")
        st.write(f"output: {output['text']}")
    
    st.title("Microphone Input for ASR")

    # Initialize the audio processor
    audio_processor = AudioProcessor()

    webrtc_streamer(
        key="audio",
        mode=WebRtcMode.SENDONLY,
        audio_processor_factory=lambda: audio_processor,
        media_stream_constraints={"audio": True, "video": False},
    )


    if st.button("Process Audio"):
        audio_data = audio_processor.get_audio_data()
        if audio_data is not None:
            # Convert the NumPy array to a WAV-like audio segment
            audio_segment = pydub.AudioSegment(
                audio_data.tobytes(),
                frame_rate=16000,  # Default WebRTC audio frame rate
                sample_width=2,  # 16-bit audio
                channels=1  # Mono
            )
            # Save or process audio_segment as needed
            st.success("Audio captured successfully!")
            # st.audio(audio_segment.export(format="wav"), format="audio/wav")
        else:
            st.warning("No audio data captured!")


    if st.button("Transcribe Audio"):
        if audio_data is not None:
            # Perform ASR on the audio segment
            transcription = inference(generator, audio_segment.raw_data)
            st.text_area("Transcription", transcription["text"])
        else:
            st.warning("No audio data to transcribe!")


if __name__ == "__main__":
    # Setting logger
    logger.setLevel(logging.INFO)
    
    formatter = logging.Formatter("%(levelname)8s %(asctime)s %(name)s %(message)s")
    
    stream_handler = logging.StreamHandler()
    stream_handler.setFormatter(formatter)
    logger.addHandler(stream_handler)
    
    now = datetime.datetime.now()
    now_time = now.strftime('%Y-%m-%d-%H:%M:%S')
    log_dir = Path(LOG_DIR)
    log_dir.mkdir(parents=True, exist_ok=True)
    log_file = log_dir / f"{now_time}.log"
    file_handler = logging.FileHandler(str(log_file), encoding='utf-8')
    file_handler.setFormatter(formatter)
    logger.addHandler(file_handler)
    
    logger.info('Start App')
    
    main()