Update app.py
Browse files
app.py
CHANGED
@@ -7,10 +7,8 @@ import torch
|
|
7 |
import logging
|
8 |
import numpy as np
|
9 |
import re
|
10 |
-
import sys # sys ๋ชจ๋ ์ถ๊ฐ
|
11 |
from concurrent.futures import ThreadPoolExecutor
|
12 |
from functools import lru_cache
|
13 |
-
from datetime import datetime
|
14 |
|
15 |
# ๋ก๊น
์ค์
|
16 |
logging.basicConfig(
|
@@ -22,28 +20,24 @@ logging.basicConfig(
|
|
22 |
]
|
23 |
)
|
24 |
|
|
|
|
|
|
|
|
|
25 |
def optimize_gpu_settings():
|
26 |
if torch.cuda.is_available():
|
27 |
-
# GPU ๋ฉ๋ชจ๋ฆฌ ๊ด๋ฆฌ ์ต์ ํ
|
28 |
torch.backends.cuda.matmul.allow_tf32 = True
|
29 |
torch.backends.cudnn.benchmark = True
|
30 |
torch.backends.cudnn.enabled = True
|
31 |
torch.backends.cudnn.deterministic = False
|
32 |
-
|
33 |
-
# L40S์ ์ต์ ํ๋ ๋ฉ๋ชจ๋ฆฌ ์ค์
|
34 |
torch.cuda.empty_cache()
|
35 |
torch.cuda.set_device(0)
|
36 |
-
|
37 |
-
# CUDA ์คํธ๋ฆผ ์ต์ ํ
|
38 |
torch.cuda.Stream(0)
|
39 |
-
|
40 |
-
# ๋ฉ๋ชจ๋ฆฌ ํ ๋น ์ต์ ํ
|
41 |
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'
|
42 |
|
43 |
logging.info(f"Using GPU: {torch.cuda.get_device_name(0)}")
|
44 |
logging.info(f"Available GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.2f} GB")
|
45 |
|
46 |
-
# L40S ํนํ ์ค์
|
47 |
if 'L40S' in torch.cuda.get_device_name(0):
|
48 |
torch.cuda.set_per_process_memory_fraction(0.95)
|
49 |
|
@@ -65,7 +59,6 @@ def analyze_lyrics(lyrics, repeat_chorus=2):
|
|
65 |
}
|
66 |
last_section = None
|
67 |
|
68 |
-
# ๋ง์ง๋ง ์น์
ํ๊ทธ ์ฐพ๊ธฐ
|
69 |
for i, line in enumerate(lines):
|
70 |
if '[verse]' in line.lower() or '[chorus]' in line.lower() or '[bridge]' in line.lower():
|
71 |
last_section = i
|
@@ -73,9 +66,8 @@ def analyze_lyrics(lyrics, repeat_chorus=2):
|
|
73 |
for i, line in enumerate(lines):
|
74 |
lower_line = line.lower()
|
75 |
|
76 |
-
# ์น์
ํ๊ทธ ์ฒ๋ฆฌ
|
77 |
if '[verse]' in lower_line:
|
78 |
-
if current_section:
|
79 |
section_lines[current_section].extend(lines[last_section_start:i])
|
80 |
current_section = 'verse'
|
81 |
sections['verse'] += 1
|
@@ -96,58 +88,50 @@ def analyze_lyrics(lyrics, repeat_chorus=2):
|
|
96 |
last_section_start = i + 1
|
97 |
continue
|
98 |
|
99 |
-
|
100 |
-
if current_section and last_section_start < len(lines):
|
101 |
section_lines[current_section].extend(lines[last_section_start:])
|
102 |
|
103 |
-
# ์ฝ๋ฌ์ค ๋ฐ๋ณต ์ฒ๋ฆฌ
|
104 |
if sections['chorus'] > 0 and repeat_chorus > 1:
|
105 |
original_chorus = section_lines['chorus'][:]
|
106 |
for _ in range(repeat_chorus - 1):
|
107 |
section_lines['chorus'].extend(original_chorus)
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
113 |
|
114 |
return sections, (sections['verse'] + sections['chorus'] + sections['bridge']), len(lines), section_lines
|
115 |
|
116 |
def calculate_generation_params(lyrics):
|
117 |
sections, total_sections, total_lines, section_lines = analyze_lyrics(lyrics)
|
118 |
|
119 |
-
# ๊ธฐ๋ณธ ์๊ฐ ๊ณ์ฐ (์ด ๋จ์)
|
120 |
time_per_line = {
|
121 |
-
'verse': 4,
|
122 |
-
'chorus': 6,
|
123 |
-
'bridge': 5
|
124 |
}
|
125 |
|
126 |
-
# ๊ฐ ์น์
๋ณ ์์ ์๊ฐ ๊ณ์ฐ (๋ง์ง๋ง ์น์
ํฌํจ)
|
127 |
section_durations = {}
|
128 |
for section_type in ['verse', 'chorus', 'bridge']:
|
129 |
lines_count = len(section_lines[section_type])
|
130 |
section_durations[section_type] = lines_count * time_per_line[section_type]
|
131 |
|
132 |
-
# ์ ์ฒด ์๊ฐ ๊ณ์ฐ (์ฌ์ ์๊ฐ ์ถ๊ฐ)
|
133 |
total_duration = sum(duration for duration in section_durations.values())
|
134 |
-
total_duration = max(60, int(total_duration * 1.2))
|
135 |
|
136 |
-
# ํ ํฐ ๊ณ์ฐ (๋ง์ง๋ง ์น์
์ ์ํ ์ถ๊ฐ ํ ํฐ)
|
137 |
base_tokens = 3000
|
138 |
tokens_per_line = 200
|
139 |
-
extra_tokens = 1000
|
140 |
-
|
141 |
total_tokens = base_tokens + (total_lines * tokens_per_line) + extra_tokens
|
142 |
|
143 |
-
# ์ธ๊ทธ๋จผํธ ์ ๊ณ์ฐ (๋ง์ง๋ง ์น์
์ ์ํ ์ถ๊ฐ ์ธ๊ทธ๋จผํธ)
|
144 |
if sections['chorus'] > 0:
|
145 |
-
num_segments = 4
|
146 |
else:
|
147 |
-
num_segments = 3
|
148 |
-
|
149 |
-
|
150 |
-
max_tokens = min(12000, total_tokens) # ์ต๋ ํ ํฐ ์ ์ฆ๊ฐ
|
151 |
|
152 |
return {
|
153 |
'max_tokens': max_tokens,
|
@@ -201,101 +185,35 @@ def install_flash_attn():
|
|
201 |
logging.warning(f"Failed to install flash-attn: {e}")
|
202 |
return False
|
203 |
|
204 |
-
|
205 |
-
# ์ ์ญ ๋ณ์๋ก ๊ฒฝ๋ก ์ค์
|
206 |
-
APP_DIR = os.path.abspath(os.path.dirname(__file__))
|
207 |
-
INFERENCE_DIR = os.path.join(APP_DIR, "inference")
|
208 |
-
INFER_SCRIPT = os.path.join(INFERENCE_DIR, "infer.py")
|
209 |
-
|
210 |
def initialize_system():
|
211 |
optimize_gpu_settings()
|
212 |
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
inference_dir = os.path.join(app_dir, "inference")
|
217 |
-
|
218 |
-
# ๊ธฐ๋ณธ ๋๋ ํ ๋ฆฌ ๊ตฌ์กฐ ์์ฑ
|
219 |
-
os.makedirs(inference_dir, exist_ok=True)
|
220 |
-
os.makedirs(os.path.join(inference_dir, "models"), exist_ok=True)
|
221 |
-
os.makedirs(os.path.join(inference_dir, "xcodec_mini_infer"), exist_ok=True)
|
222 |
-
|
223 |
-
# ์์
๋๋ ํ ๋ฆฌ ๋ณ๊ฒฝ
|
224 |
-
os.chdir(inference_dir)
|
225 |
-
logging.info(f"Working directory changed to: {os.getcwd()}")
|
226 |
-
|
227 |
-
from huggingface_hub import snapshot_download, hf_hub_download
|
228 |
|
229 |
-
|
230 |
-
models_dir = os.path.join(inference_dir, "models")
|
231 |
-
os.makedirs(models_dir, exist_ok=True)
|
232 |
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
soundstream_file = hf_hub_download(
|
240 |
-
repo_id="m-a-p/xcodec_mini_infer",
|
241 |
-
filename="models/soundstream_hubert_new.py",
|
242 |
-
cache_dir=os.path.join(inference_dir, "cache"),
|
243 |
-
force_download=True
|
244 |
-
)
|
245 |
-
shutil.copy2(soundstream_file, os.path.join(models_dir, "soundstream_hubert_new.py"))
|
246 |
-
except Exception as e:
|
247 |
-
logging.error(f"Failed to download soundstream_hubert_new.py: {e}")
|
248 |
-
raise
|
249 |
-
|
250 |
-
# xcodec_mini_infer ๋ชจ๋ธ ๋ค์ด๋ก๋
|
251 |
-
snapshot_download(
|
252 |
repo_id="m-a-p/xcodec_mini_infer",
|
253 |
-
local_dir=
|
254 |
-
|
255 |
-
)
|
256 |
-
|
257 |
-
# YuE ๋ชจ๋ธ๋ค ๋ค์ด๋ก๋
|
258 |
-
models = [
|
259 |
-
"m-a-p/YuE-s1-7B-anneal-jp-kr-cot",
|
260 |
-
"m-a-p/YuE-s1-7B-anneal-en-cot",
|
261 |
-
"m-a-p/YuE-s1-7B-anneal-zh-cot",
|
262 |
-
"m-a-p/YuE-s2-1B-general"
|
263 |
-
]
|
264 |
-
|
265 |
-
for model in models:
|
266 |
-
model_name = model.split('/')[-1]
|
267 |
-
snapshot_download(
|
268 |
-
repo_id=model,
|
269 |
-
local_dir=os.path.join(inference_dir, "models", model_name),
|
270 |
-
force_download=True
|
271 |
-
)
|
272 |
-
|
273 |
-
# PYTHONPATH ์ค์
|
274 |
-
if inference_dir not in sys.path:
|
275 |
-
sys.path.insert(0, inference_dir)
|
276 |
|
277 |
-
|
278 |
-
|
279 |
-
os.path.join(models_dir, "__init__.py"),
|
280 |
-
os.path.join(models_dir, "soundstream_hubert_new.py"),
|
281 |
-
os.path.join(inference_dir, "xcodec_mini_infer", "config.json"),
|
282 |
-
os.path.join(inference_dir, "xcodec_mini_infer", "vocal_decoder.pth"),
|
283 |
-
os.path.join(inference_dir, "xcodec_mini_infer", "inst_decoder.pth")
|
284 |
-
]
|
285 |
-
|
286 |
-
for file_path in required_files:
|
287 |
-
if not os.path.exists(file_path):
|
288 |
-
raise FileNotFoundError(f"Required file not found: {file_path}")
|
289 |
-
else:
|
290 |
-
file_size = os.path.getsize(file_path)
|
291 |
-
logging.info(f"Verified {os.path.basename(file_path)}: {file_size} bytes")
|
292 |
-
|
293 |
-
logging.info("System initialization completed successfully")
|
294 |
-
|
295 |
-
except Exception as e:
|
296 |
-
logging.error(f"Initialization error: {e}")
|
297 |
-
raise
|
298 |
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
|
300 |
@lru_cache(maxsize=100)
|
301 |
def get_cached_file_path(content_hash, prefix):
|
@@ -338,33 +256,62 @@ def get_audio_duration(file_path):
|
|
338 |
logging.error(f"Failed to get audio duration: {e}")
|
339 |
return None
|
340 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens):
|
342 |
genre_txt_path = None
|
343 |
lyrics_txt_path = None
|
344 |
|
345 |
try:
|
346 |
-
if not os.path.exists(INFER_SCRIPT):
|
347 |
-
raise FileNotFoundError(f"infer.py not found at: {INFER_SCRIPT}")
|
348 |
-
|
349 |
model_path, config, params = optimize_model_selection(lyrics_txt_content, genre_txt_content)
|
350 |
logging.info(f"Selected model: {model_path}")
|
351 |
logging.info(f"Lyrics analysis: {params}")
|
352 |
-
|
353 |
|
354 |
has_chorus = params['sections']['chorus'] > 0
|
355 |
estimated_duration = params.get('estimated_duration', 90)
|
356 |
|
357 |
-
|
358 |
# ์ธ๊ทธ๋จผํธ ๋ฐ ํ ํฐ ์ ์ค์
|
359 |
if has_chorus:
|
360 |
actual_max_tokens = min(12000, int(config['max_tokens'] * 1.3)) # 30% ๋ ๋ง์ ํ ํฐ
|
361 |
-
actual_num_segments = min(5, params['num_segments'] + 2)
|
362 |
else:
|
363 |
actual_max_tokens = min(10000, int(config['max_tokens'] * 1.2))
|
364 |
actual_num_segments = min(4, params['num_segments'] + 1)
|
365 |
|
366 |
-
|
367 |
-
|
368 |
logging.info(f"Estimated duration: {estimated_duration} seconds")
|
369 |
logging.info(f"Has chorus sections: {has_chorus}")
|
370 |
logging.info(f"Using segments: {actual_num_segments}, tokens: {actual_max_tokens}")
|
@@ -376,29 +323,21 @@ def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens):
|
|
376 |
os.makedirs(output_dir, exist_ok=True)
|
377 |
empty_output_folder(output_dir)
|
378 |
|
379 |
-
|
380 |
-
python_executable = sys.executable or "python" # fallback to "python" if sys.executable is not available
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
command = [
|
386 |
-
|
387 |
-
INFER_SCRIPT,
|
388 |
"--stage1_model", model_path,
|
389 |
"--stage2_model", "m-a-p/YuE-s2-1B-general",
|
390 |
-
"--genre_txt",
|
391 |
-
"--lyrics_txt",
|
392 |
"--run_n_segments", str(actual_num_segments),
|
393 |
"--stage2_batch_size", "16",
|
394 |
-
"--output_dir",
|
395 |
"--cuda_idx", "0",
|
396 |
"--max_new_tokens", str(actual_max_tokens),
|
397 |
"--disable_offload_model"
|
398 |
]
|
|
|
399 |
env = os.environ.copy()
|
400 |
-
current_dir = os.getcwd()
|
401 |
-
|
402 |
if torch.cuda.is_available():
|
403 |
env.update({
|
404 |
"CUDA_VISIBLE_DEVICES": "0",
|
@@ -406,11 +345,10 @@ def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens):
|
|
406 |
"PATH": f"/usr/local/cuda/bin:{env.get('PATH', '')}",
|
407 |
"LD_LIBRARY_PATH": f"/usr/local/cuda/lib64:{env.get('LD_LIBRARY_PATH', '')}",
|
408 |
"PYTORCH_CUDA_ALLOC_CONF": "max_split_size_mb:512",
|
409 |
-
"CUDA_LAUNCH_BLOCKING": "0"
|
410 |
-
"PYTHONPATH": current_dir
|
411 |
})
|
412 |
|
413 |
-
# transformers ์บ์ ๋ง์ด๊ทธ๋ ์ด์
์ฒ๋ฆฌ
|
414 |
try:
|
415 |
from transformers.utils import move_cache
|
416 |
move_cache()
|
@@ -444,7 +382,9 @@ def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens):
|
|
444 |
logging.info(f"Expected duration: {estimated_duration} seconds")
|
445 |
|
446 |
if duration < estimated_duration * 0.8:
|
447 |
-
logging.warning(
|
|
|
|
|
448 |
except Exception as e:
|
449 |
logging.warning(f"Failed to get audio duration: {e}")
|
450 |
return last_mp3
|
@@ -464,190 +404,117 @@ def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens):
|
|
464 |
except Exception as e:
|
465 |
logging.warning(f"Failed to remove temporary file {path}: {e}")
|
466 |
|
467 |
-
|
468 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
469 |
params = calculate_generation_params(lyrics)
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
"max_tokens": params['max_tokens'],
|
477 |
-
"temperature": 0.8,
|
478 |
-
"batch_size": 16,
|
479 |
-
"num_segments": params['num_segments'],
|
480 |
-
"estimated_duration": params['estimated_duration']
|
481 |
-
},
|
482 |
-
"m-a-p/YuE-s1-7B-anneal-jp-kr-cot": {
|
483 |
-
"max_tokens": params['max_tokens'],
|
484 |
-
"temperature": 0.7,
|
485 |
-
"batch_size": 16,
|
486 |
-
"num_segments": params['num_segments'],
|
487 |
-
"estimated_duration": params['estimated_duration']
|
488 |
-
},
|
489 |
-
"m-a-p/YuE-s1-7B-anneal-zh-cot": {
|
490 |
-
"max_tokens": params['max_tokens'],
|
491 |
-
"temperature": 0.7,
|
492 |
-
"batch_size": 16,
|
493 |
-
"num_segments": params['num_segments'],
|
494 |
-
"estimated_duration": params['estimated_duration']
|
495 |
-
}
|
496 |
-
}
|
497 |
-
|
498 |
-
if has_chorus:
|
499 |
-
for config in model_config.values():
|
500 |
-
config['max_tokens'] = int(config['max_tokens'] * 1.5)
|
501 |
-
|
502 |
-
return model_path, model_config[model_path], params
|
503 |
|
504 |
def main():
|
505 |
-
#
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
margin-bottom:
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
border-radius: 10px;
|
560 |
-
border: 1px solid #e2e8f0;
|
561 |
-
margin: 10px 0;
|
562 |
-
}
|
563 |
-
.status-section {
|
564 |
-
background: #fff;
|
565 |
-
padding: 15px;
|
566 |
-
border-radius: 10px;
|
567 |
-
margin-top: 15px;
|
568 |
-
border: 1px solid #e2e8f0;
|
569 |
-
}
|
570 |
-
"""
|
571 |
-
|
572 |
-
with gr.Blocks(theme=theme, css=custom_css) as demo:
|
573 |
-
with gr.Column(elem_id="main-container"):
|
574 |
-
# ํค๋ ์น์
|
575 |
-
with gr.Row(elem_id="header"):
|
576 |
-
gr.Markdown(
|
577 |
-
"""
|
578 |
-
# ๐ต AI Song Creator 'Open SUNO'
|
579 |
-
### Transform Your Lyrics into Complete Songs with Music
|
580 |
-
Create professional songs from your lyrics in multiple languages
|
581 |
-
"""
|
582 |
)
|
583 |
|
584 |
-
#
|
585 |
-
with gr.
|
586 |
-
|
587 |
-
|
588 |
-
gr.
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
|
|
|
|
593 |
)
|
594 |
-
|
595 |
-
label="
|
596 |
-
|
597 |
-
|
598 |
-
|
|
|
|
|
599 |
)
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
)
|
619 |
-
|
620 |
-
# ์ถ๋ ฅ ์น์
|
621 |
-
with gr.Column(scale=1, elem_classes="output-section"):
|
622 |
-
gr.Markdown("### ๐ต Generated Music")
|
623 |
-
music_out = gr.Audio(
|
624 |
-
label="Generated Song",
|
625 |
-
elem_id="music-output"
|
626 |
-
)
|
627 |
-
|
628 |
-
# ์งํ ์ํ
|
629 |
-
with gr.Group(elem_classes="status-section"):
|
630 |
-
gr.Markdown("### ๐ Generation Status")
|
631 |
-
num_segments = gr.Number(
|
632 |
-
label="Song Segments",
|
633 |
-
value=2,
|
634 |
-
interactive=False,
|
635 |
-
visible=False
|
636 |
-
)
|
637 |
-
max_new_tokens = gr.Number(
|
638 |
-
label="Tokens",
|
639 |
-
value=4000,
|
640 |
-
interactive=False,
|
641 |
-
visible=False
|
642 |
-
)
|
643 |
-
|
644 |
-
# ์์ ์น์
|
645 |
-
with gr.Accordion("๐ Examples", open=False):
|
646 |
-
gr.Examples(
|
647 |
-
examples=[
|
648 |
-
[
|
649 |
-
"female blues airy vocal bright vocal piano sad romantic guitar jazz",
|
650 |
-
"""[verse]
|
651 |
In the quiet of the evening, shadows start to fall
|
652 |
Whispers of the night wind echo through the hall
|
653 |
Lost within the silence, I hear your gentle voice
|
@@ -657,67 +524,31 @@ Guiding me back homeward, making my heart rejoice
|
|
657 |
Don't let this moment fade, hold me close tonight
|
658 |
With you here beside me, everything's alright
|
659 |
Can't imagine life alone, don't want to let you go
|
660 |
-
Stay with me forever, let our love just flow
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
|
|
665 |
์ธ์ ๊ฐ ๋ง์ฃผํ ๋๋น ์์์
|
666 |
|
667 |
[chorus]
|
668 |
๋ค์ ํ ๋ฒ ๋ด๊ฒ ๋งํด์ค
|
|
|
|
|
|
|
|
|
|
|
|
|
669 |
|
670 |
-
|
671 |
-
์ด๋์ด ๋ฐค์ ์ง๋ ๋๋ง๋ค
|
672 |
-
|
673 |
-
[chorus]
|
674 |
-
๋ค์ ํ ๋ฒ ๋ด๊ฒ ๋งํด์ค"""
|
675 |
-
]
|
676 |
-
],
|
677 |
-
inputs=[genre_txt, lyrics_txt]
|
678 |
-
)
|
679 |
-
|
680 |
-
# ๋์๋ง ์น์
|
681 |
-
with gr.Accordion("โน๏ธ Help & Information", open=False):
|
682 |
-
gr.Markdown(
|
683 |
-
"""
|
684 |
-
### ๐ต How to Use
|
685 |
-
1. **Enter Genre & Style**: Describe the musical style you want
|
686 |
-
2. **Input Lyrics**: Write your lyrics using section tags
|
687 |
-
3. **Generate**: Click the Generate button and wait for your music!
|
688 |
-
|
689 |
-
### ๐ Supported Languages
|
690 |
-
- English
|
691 |
-
- Korean (ํ๊ตญ์ด)
|
692 |
-
- Japanese (ๆฅๆฌ่ช)
|
693 |
-
- Chinese (ไธญๆ)
|
694 |
-
|
695 |
-
### โก Tips for Best Results
|
696 |
-
- Be specific with genre descriptions
|
697 |
-
- Include emotion and instrument preferences
|
698 |
-
- Properly tag your lyrics sections
|
699 |
-
- Include both verse and chorus sections
|
700 |
-
"""
|
701 |
-
)
|
702 |
-
|
703 |
-
def update_info(lyrics):
|
704 |
-
if not lyrics:
|
705 |
-
return "No lyrics entered", "No sections detected"
|
706 |
-
params = calculate_generation_params(lyrics)
|
707 |
-
duration = params['estimated_duration']
|
708 |
-
sections = params['sections']
|
709 |
-
return (
|
710 |
-
f"โฑ๏ธ Duration: {duration:.1f} seconds",
|
711 |
-
f"๐ Verses: {sections['verse']}, Chorus: {sections['chorus']}"
|
712 |
-
)
|
713 |
-
|
714 |
-
# ์ด๋ฒคํธ ํธ๋ค๋ฌ ์ค์
|
715 |
lyrics_txt.change(
|
716 |
fn=update_info,
|
717 |
inputs=[lyrics_txt],
|
718 |
outputs=[duration_info, sections_info]
|
719 |
)
|
720 |
-
|
|
|
721 |
submit_btn.click(
|
722 |
fn=infer,
|
723 |
inputs=[genre_txt, lyrics_txt, num_segments, max_new_tokens],
|
@@ -726,6 +557,7 @@ Stay with me forever, let our love just flow"""
|
|
726 |
|
727 |
return demo
|
728 |
|
|
|
729 |
if __name__ == "__main__":
|
730 |
demo = main()
|
731 |
demo.queue(max_size=20).launch(
|
@@ -735,4 +567,4 @@ if __name__ == "__main__":
|
|
735 |
show_api=True,
|
736 |
show_error=True,
|
737 |
max_threads=8
|
738 |
-
)
|
|
|
7 |
import logging
|
8 |
import numpy as np
|
9 |
import re
|
|
|
10 |
from concurrent.futures import ThreadPoolExecutor
|
11 |
from functools import lru_cache
|
|
|
12 |
|
13 |
# ๋ก๊น
์ค์
|
14 |
logging.basicConfig(
|
|
|
20 |
]
|
21 |
)
|
22 |
|
23 |
+
################################
|
24 |
+
# ๊ธฐ์กด์ ์ ์๋ ํจ์ ๋ฐ ๋ก์ง๋ค #
|
25 |
+
################################
|
26 |
+
|
27 |
def optimize_gpu_settings():
|
28 |
if torch.cuda.is_available():
|
|
|
29 |
torch.backends.cuda.matmul.allow_tf32 = True
|
30 |
torch.backends.cudnn.benchmark = True
|
31 |
torch.backends.cudnn.enabled = True
|
32 |
torch.backends.cudnn.deterministic = False
|
|
|
|
|
33 |
torch.cuda.empty_cache()
|
34 |
torch.cuda.set_device(0)
|
|
|
|
|
35 |
torch.cuda.Stream(0)
|
|
|
|
|
36 |
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'
|
37 |
|
38 |
logging.info(f"Using GPU: {torch.cuda.get_device_name(0)}")
|
39 |
logging.info(f"Available GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.2f} GB")
|
40 |
|
|
|
41 |
if 'L40S' in torch.cuda.get_device_name(0):
|
42 |
torch.cuda.set_per_process_memory_fraction(0.95)
|
43 |
|
|
|
59 |
}
|
60 |
last_section = None
|
61 |
|
|
|
62 |
for i, line in enumerate(lines):
|
63 |
if '[verse]' in line.lower() or '[chorus]' in line.lower() or '[bridge]' in line.lower():
|
64 |
last_section = i
|
|
|
66 |
for i, line in enumerate(lines):
|
67 |
lower_line = line.lower()
|
68 |
|
|
|
69 |
if '[verse]' in lower_line:
|
70 |
+
if current_section:
|
71 |
section_lines[current_section].extend(lines[last_section_start:i])
|
72 |
current_section = 'verse'
|
73 |
sections['verse'] += 1
|
|
|
88 |
last_section_start = i + 1
|
89 |
continue
|
90 |
|
91 |
+
if current_section and 'last_section_start' in locals() and last_section_start < len(lines):
|
|
|
92 |
section_lines[current_section].extend(lines[last_section_start:])
|
93 |
|
|
|
94 |
if sections['chorus'] > 0 and repeat_chorus > 1:
|
95 |
original_chorus = section_lines['chorus'][:]
|
96 |
for _ in range(repeat_chorus - 1):
|
97 |
section_lines['chorus'].extend(original_chorus)
|
98 |
|
99 |
+
logging.info(
|
100 |
+
f"Section line counts - Verse: {len(section_lines['verse'])}, "
|
101 |
+
f"Chorus: {len(section_lines['chorus'])}, "
|
102 |
+
f"Bridge: {len(section_lines['bridge'])}"
|
103 |
+
)
|
104 |
|
105 |
return sections, (sections['verse'] + sections['chorus'] + sections['bridge']), len(lines), section_lines
|
106 |
|
107 |
def calculate_generation_params(lyrics):
|
108 |
sections, total_sections, total_lines, section_lines = analyze_lyrics(lyrics)
|
109 |
|
|
|
110 |
time_per_line = {
|
111 |
+
'verse': 4,
|
112 |
+
'chorus': 6,
|
113 |
+
'bridge': 5
|
114 |
}
|
115 |
|
|
|
116 |
section_durations = {}
|
117 |
for section_type in ['verse', 'chorus', 'bridge']:
|
118 |
lines_count = len(section_lines[section_type])
|
119 |
section_durations[section_type] = lines_count * time_per_line[section_type]
|
120 |
|
|
|
121 |
total_duration = sum(duration for duration in section_durations.values())
|
122 |
+
total_duration = max(60, int(total_duration * 1.2))
|
123 |
|
|
|
124 |
base_tokens = 3000
|
125 |
tokens_per_line = 200
|
126 |
+
extra_tokens = 1000
|
|
|
127 |
total_tokens = base_tokens + (total_lines * tokens_per_line) + extra_tokens
|
128 |
|
|
|
129 |
if sections['chorus'] > 0:
|
130 |
+
num_segments = 4
|
131 |
else:
|
132 |
+
num_segments = 3
|
133 |
+
|
134 |
+
max_tokens = min(12000, total_tokens)
|
|
|
135 |
|
136 |
return {
|
137 |
'max_tokens': max_tokens,
|
|
|
185 |
logging.warning(f"Failed to install flash-attn: {e}")
|
186 |
return False
|
187 |
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
def initialize_system():
|
189 |
optimize_gpu_settings()
|
190 |
|
191 |
+
with ThreadPoolExecutor(max_workers=4) as executor:
|
192 |
+
futures = []
|
193 |
+
futures.append(executor.submit(install_flash_attn))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
+
from huggingface_hub import snapshot_download
|
|
|
|
|
196 |
|
197 |
+
folder_path = './inference/xcodec_mini_infer'
|
198 |
+
os.makedirs(folder_path, exist_ok=True)
|
199 |
+
logging.info(f"Created folder at: {folder_path}")
|
200 |
+
|
201 |
+
futures.append(executor.submit(
|
202 |
+
snapshot_download,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
repo_id="m-a-p/xcodec_mini_infer",
|
204 |
+
local_dir="./inference/xcodec_mini_infer",
|
205 |
+
resume_download=True
|
206 |
+
))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
|
208 |
+
for future in futures:
|
209 |
+
future.result()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
|
211 |
+
try:
|
212 |
+
os.chdir("./inference")
|
213 |
+
logging.info(f"Working directory changed to: {os.getcwd()}")
|
214 |
+
except FileNotFoundError as e:
|
215 |
+
logging.error(f"Directory error: {e}")
|
216 |
+
raise
|
217 |
|
218 |
@lru_cache(maxsize=100)
|
219 |
def get_cached_file_path(content_hash, prefix):
|
|
|
256 |
logging.error(f"Failed to get audio duration: {e}")
|
257 |
return None
|
258 |
|
259 |
+
def optimize_model_selection(lyrics, genre):
|
260 |
+
model_path = detect_and_select_model(lyrics)
|
261 |
+
params = calculate_generation_params(lyrics)
|
262 |
+
|
263 |
+
has_chorus = params['sections']['chorus'] > 0
|
264 |
+
|
265 |
+
model_config = {
|
266 |
+
"m-a-p/YuE-s1-7B-anneal-en-cot": {
|
267 |
+
"max_tokens": params['max_tokens'],
|
268 |
+
"temperature": 0.8,
|
269 |
+
"batch_size": 16,
|
270 |
+
"num_segments": params['num_segments'],
|
271 |
+
"estimated_duration": params['estimated_duration']
|
272 |
+
},
|
273 |
+
"m-a-p/YuE-s1-7B-anneal-jp-kr-cot": {
|
274 |
+
"max_tokens": params['max_tokens'],
|
275 |
+
"temperature": 0.7,
|
276 |
+
"batch_size": 16,
|
277 |
+
"num_segments": params['num_segments'],
|
278 |
+
"estimated_duration": params['estimated_duration']
|
279 |
+
},
|
280 |
+
"m-a-p/YuE-s1-7B-anneal-zh-cot": {
|
281 |
+
"max_tokens": params['max_tokens'],
|
282 |
+
"temperature": 0.7,
|
283 |
+
"batch_size": 16,
|
284 |
+
"num_segments": params['num_segments'],
|
285 |
+
"estimated_duration": params['estimated_duration']
|
286 |
+
}
|
287 |
+
}
|
288 |
+
|
289 |
+
if has_chorus:
|
290 |
+
for config in model_config.values():
|
291 |
+
config['max_tokens'] = int(config['max_tokens'] * 1.5)
|
292 |
+
|
293 |
+
return model_path, model_config[model_path], params
|
294 |
+
|
295 |
def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens):
|
296 |
genre_txt_path = None
|
297 |
lyrics_txt_path = None
|
298 |
|
299 |
try:
|
|
|
|
|
|
|
300 |
model_path, config, params = optimize_model_selection(lyrics_txt_content, genre_txt_content)
|
301 |
logging.info(f"Selected model: {model_path}")
|
302 |
logging.info(f"Lyrics analysis: {params}")
|
|
|
303 |
|
304 |
has_chorus = params['sections']['chorus'] > 0
|
305 |
estimated_duration = params.get('estimated_duration', 90)
|
306 |
|
|
|
307 |
# ์ธ๊ทธ๋จผํธ ๋ฐ ํ ํฐ ์ ์ค์
|
308 |
if has_chorus:
|
309 |
actual_max_tokens = min(12000, int(config['max_tokens'] * 1.3)) # 30% ๋ ๋ง์ ํ ํฐ
|
310 |
+
actual_num_segments = min(5, params['num_segments'] + 2) # ์ถ๊ฐ ์ธ๊ทธ๋จผํธ
|
311 |
else:
|
312 |
actual_max_tokens = min(10000, int(config['max_tokens'] * 1.2))
|
313 |
actual_num_segments = min(4, params['num_segments'] + 1)
|
314 |
|
|
|
|
|
315 |
logging.info(f"Estimated duration: {estimated_duration} seconds")
|
316 |
logging.info(f"Has chorus sections: {has_chorus}")
|
317 |
logging.info(f"Using segments: {actual_num_segments}, tokens: {actual_max_tokens}")
|
|
|
323 |
os.makedirs(output_dir, exist_ok=True)
|
324 |
empty_output_folder(output_dir)
|
325 |
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
command = [
|
327 |
+
"python", "infer.py",
|
|
|
328 |
"--stage1_model", model_path,
|
329 |
"--stage2_model", "m-a-p/YuE-s2-1B-general",
|
330 |
+
"--genre_txt", genre_txt_path,
|
331 |
+
"--lyrics_txt", lyrics_txt_path,
|
332 |
"--run_n_segments", str(actual_num_segments),
|
333 |
"--stage2_batch_size", "16",
|
334 |
+
"--output_dir", output_dir,
|
335 |
"--cuda_idx", "0",
|
336 |
"--max_new_tokens", str(actual_max_tokens),
|
337 |
"--disable_offload_model"
|
338 |
]
|
339 |
+
|
340 |
env = os.environ.copy()
|
|
|
|
|
341 |
if torch.cuda.is_available():
|
342 |
env.update({
|
343 |
"CUDA_VISIBLE_DEVICES": "0",
|
|
|
345 |
"PATH": f"/usr/local/cuda/bin:{env.get('PATH', '')}",
|
346 |
"LD_LIBRARY_PATH": f"/usr/local/cuda/lib64:{env.get('LD_LIBRARY_PATH', '')}",
|
347 |
"PYTORCH_CUDA_ALLOC_CONF": "max_split_size_mb:512",
|
348 |
+
"CUDA_LAUNCH_BLOCKING": "0"
|
|
|
349 |
})
|
350 |
|
351 |
+
# transformers ์บ์ ๋ง์ด๊ทธ๋ ์ด์
์ฒ๋ฆฌ (๋ฒ์ ์ ๋ฐ๋ผ ๋์ํ์ง ์์ ์ ์์)
|
352 |
try:
|
353 |
from transformers.utils import move_cache
|
354 |
move_cache()
|
|
|
382 |
logging.info(f"Expected duration: {estimated_duration} seconds")
|
383 |
|
384 |
if duration < estimated_duration * 0.8:
|
385 |
+
logging.warning(
|
386 |
+
f"Generated audio is shorter than expected: {duration:.2f}s < {estimated_duration:.2f}s"
|
387 |
+
)
|
388 |
except Exception as e:
|
389 |
logging.warning(f"Failed to get audio duration: {e}")
|
390 |
return last_mp3
|
|
|
404 |
except Exception as e:
|
405 |
logging.warning(f"Failed to remove temporary file {path}: {e}")
|
406 |
|
407 |
+
#####################################
|
408 |
+
# ์๋๋ถํฐ Gradio UI ๋ฐ main() ๋ถ๋ถ #
|
409 |
+
#####################################
|
410 |
+
|
411 |
+
def update_info(lyrics):
|
412 |
+
"""๊ฐ์ฌ ๋ณ๊ฒฝ ์ ์ถ์ ์ ๋ณด๋ฅผ ์
๋ฐ์ดํธํ๋ ํจ์."""
|
413 |
+
if not lyrics:
|
414 |
+
return "No lyrics entered", "No sections detected"
|
415 |
params = calculate_generation_params(lyrics)
|
416 |
+
duration = params['estimated_duration']
|
417 |
+
sections = params['sections']
|
418 |
+
return (
|
419 |
+
f"Estimated duration: {duration:.1f} seconds",
|
420 |
+
f"Verses: {sections['verse']}, Chorus: {sections['chorus']} (Expected full length including chorus)"
|
421 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
422 |
|
423 |
def main():
|
424 |
+
# ๋จผ์ ์์คํ
์ด๊ธฐํ (GPU ์ต์ ํ, ํ์ํ ๋ชจ๋ธ ๋ค์ด๋ก๋ ๋ฑ)
|
425 |
+
initialize_system()
|
426 |
+
|
427 |
+
with gr.Blocks(css="""
|
428 |
+
/* ์ ์ฒด ๋ฐฐ๊ฒฝ ๋ฐ ์ปจํ
์ด๋ ์คํ์ผ */
|
429 |
+
body {
|
430 |
+
background-color: #f5f5f5;
|
431 |
+
}
|
432 |
+
.gradio-container {
|
433 |
+
max-width: 1000px;
|
434 |
+
margin: auto !important;
|
435 |
+
background-color: #ffffff;
|
436 |
+
border-radius: 8px;
|
437 |
+
padding: 20px;
|
438 |
+
box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1);
|
439 |
+
}
|
440 |
+
/* ํ
์คํธ ํฌ๊ธฐ, ๋ง์ง ์กฐ์ */
|
441 |
+
h1, h2, h3 {
|
442 |
+
margin: 0;
|
443 |
+
padding: 0;
|
444 |
+
}
|
445 |
+
p {
|
446 |
+
margin: 5px 0;
|
447 |
+
}
|
448 |
+
/* ์์ ๋ธ๋ก ์คํ์ผ */
|
449 |
+
.gr-examples {
|
450 |
+
background-color: #fafafa;
|
451 |
+
border-radius: 8px;
|
452 |
+
padding: 10px;
|
453 |
+
}
|
454 |
+
""") as demo:
|
455 |
+
|
456 |
+
# ์๋จ ํค๋
|
457 |
+
gr.HTML("""
|
458 |
+
<div style="text-align: center; margin-bottom: 1.5rem;">
|
459 |
+
<h1>Open SUNO: Full-Song Generation (Multi-Language Support)</h1>
|
460 |
+
<p style="font-size: 1.1rem; color: #555;">
|
461 |
+
Enter your song details below and let the AI handle the music production!
|
462 |
+
</p>
|
463 |
+
</div>
|
464 |
+
""")
|
465 |
+
|
466 |
+
with gr.Row():
|
467 |
+
# ์ผ์ชฝ ์
๋ ฅ ์ปฌ๋ผ
|
468 |
+
with gr.Column():
|
469 |
+
genre_txt = gr.Textbox(
|
470 |
+
label="Genre",
|
471 |
+
placeholder="Enter music genre and style descriptions...",
|
472 |
+
lines=2
|
473 |
+
)
|
474 |
+
lyrics_txt = gr.Textbox(
|
475 |
+
label="Lyrics (Supports English, Korean, Japanese, Chinese)",
|
476 |
+
placeholder="Enter song lyrics with [verse], [chorus], [bridge] tags...",
|
477 |
+
lines=10
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
478 |
)
|
479 |
|
480 |
+
# ์ค๋ฅธ์ชฝ ์ค์ /์ ๋ณด ์ปฌ๋ผ
|
481 |
+
with gr.Column():
|
482 |
+
with gr.Box():
|
483 |
+
gr.Markdown("### Generation Settings")
|
484 |
+
num_segments = gr.Number(
|
485 |
+
label="Number of Song Segments (Auto-adjusted)",
|
486 |
+
value=2,
|
487 |
+
minimum=1,
|
488 |
+
maximum=4,
|
489 |
+
step=1,
|
490 |
+
interactive=False
|
491 |
)
|
492 |
+
max_new_tokens = gr.Slider(
|
493 |
+
label="Max New Tokens (Auto-adjusted)",
|
494 |
+
minimum=500,
|
495 |
+
maximum=32000,
|
496 |
+
step=500,
|
497 |
+
value=4000,
|
498 |
+
interactive=False
|
499 |
)
|
500 |
+
|
501 |
+
with gr.Box():
|
502 |
+
gr.Markdown("### Song Info")
|
503 |
+
duration_info = gr.Label(label="Estimated Duration")
|
504 |
+
sections_info = gr.Label(label="Section Information")
|
505 |
+
|
506 |
+
submit_btn = gr.Button("Generate Music", variant="primary")
|
507 |
+
|
508 |
+
# ์์ฑ๋ ์ค๋์ค ์ถ๋ ฅ ์์ญ
|
509 |
+
with gr.Box():
|
510 |
+
music_out = gr.Audio(label="Generated Audio")
|
511 |
+
|
512 |
+
# ์์
|
513 |
+
gr.Examples(
|
514 |
+
examples=[
|
515 |
+
[
|
516 |
+
"female blues airy vocal bright vocal piano sad romantic guitar jazz",
|
517 |
+
"""[verse]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
518 |
In the quiet of the evening, shadows start to fall
|
519 |
Whispers of the night wind echo through the hall
|
520 |
Lost within the silence, I hear your gentle voice
|
|
|
524 |
Don't let this moment fade, hold me close tonight
|
525 |
With you here beside me, everything's alright
|
526 |
Can't imagine life alone, don't want to let you go
|
527 |
+
Stay with me forever, let our love just flow
|
528 |
+
"""
|
529 |
+
],
|
530 |
+
[
|
531 |
+
"K-pop bright energetic synth dance electronic",
|
532 |
+
"""[verse]
|
533 |
์ธ์ ๊ฐ ๋ง์ฃผํ ๋๋น ์์์
|
534 |
|
535 |
[chorus]
|
536 |
๋ค์ ํ ๋ฒ ๋ด๊ฒ ๋งํด์ค
|
537 |
+
"""
|
538 |
+
]
|
539 |
+
],
|
540 |
+
inputs=[genre_txt, lyrics_txt],
|
541 |
+
outputs=[]
|
542 |
+
)
|
543 |
|
544 |
+
# ๊ฐ์ฌ ๋ณ๊ฒฝ ์ ์ถ์ ์ ๋ณด ์
๋ฐ์ดํธ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
545 |
lyrics_txt.change(
|
546 |
fn=update_info,
|
547 |
inputs=[lyrics_txt],
|
548 |
outputs=[duration_info, sections_info]
|
549 |
)
|
550 |
+
|
551 |
+
# ๋ฒํผ ํด๋ฆญ ์ infer ์คํ
|
552 |
submit_btn.click(
|
553 |
fn=infer,
|
554 |
inputs=[genre_txt, lyrics_txt, num_segments, max_new_tokens],
|
|
|
557 |
|
558 |
return demo
|
559 |
|
560 |
+
|
561 |
if __name__ == "__main__":
|
562 |
demo = main()
|
563 |
demo.queue(max_size=20).launch(
|
|
|
567 |
show_api=True,
|
568 |
show_error=True,
|
569 |
max_threads=8
|
570 |
+
)
|