Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -20,6 +20,31 @@ logging.basicConfig( | |
| 20 | 
             
                ]
         | 
| 21 | 
             
            )
         | 
| 22 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 23 | 
             
            def analyze_lyrics(lyrics, repeat_chorus=2):
         | 
| 24 | 
             
                lines = [line.strip() for line in lyrics.split('\n') if line.strip()]
         | 
| 25 |  | 
| @@ -36,84 +61,64 @@ def analyze_lyrics(lyrics, repeat_chorus=2): | |
| 36 | 
             
                    'chorus': [],
         | 
| 37 | 
             
                    'bridge': []
         | 
| 38 | 
             
                }
         | 
| 39 | 
            -
                
         | 
| 40 | 
            -
                # λ§μ§λ§ μΉμ
μ μΆμ νκΈ° μν λ³μ
         | 
| 41 | 
            -
                last_section_start = 0
         | 
| 42 |  | 
| 43 | 
            -
                for  | 
| 44 | 
             
                    lower_line = line.lower()
         | 
| 45 | 
             
                    if '[verse]' in lower_line:
         | 
| 46 | 
            -
                        if current_section:  # μ΄μ  μΉμ
μ λΌμΈλ€ μ μ₯
         | 
| 47 | 
            -
                            section_lines[current_section].extend(lines[last_section_start:i])
         | 
| 48 | 
             
                        current_section = 'verse'
         | 
| 49 | 
             
                        sections['verse'] += 1
         | 
| 50 | 
            -
                         | 
| 51 | 
             
                    elif '[chorus]' in lower_line:
         | 
| 52 | 
            -
                        if current_section:
         | 
| 53 | 
            -
                            section_lines[current_section].extend(lines[last_section_start:i])
         | 
| 54 | 
             
                        current_section = 'chorus'
         | 
| 55 | 
             
                        sections['chorus'] += 1
         | 
| 56 | 
            -
                         | 
| 57 | 
             
                    elif '[bridge]' in lower_line:
         | 
| 58 | 
            -
                        if current_section:
         | 
| 59 | 
            -
                            section_lines[current_section].extend(lines[last_section_start:i])
         | 
| 60 | 
             
                        current_section = 'bridge'
         | 
| 61 | 
             
                        sections['bridge'] += 1
         | 
| 62 | 
            -
                         | 
| 63 |  | 
| 64 | 
            -
             | 
| 65 | 
            -
             | 
| 66 | 
            -
                    section_lines[current_section].extend(lines[last_section_start:])
         | 
| 67 |  | 
| 68 | 
            -
                # μ½λ¬μ€ λ°λ³΅ μ²λ¦¬
         | 
| 69 | 
             
                if sections['chorus'] == 1 and repeat_chorus > 1:
         | 
| 70 | 
             
                    chorus_block = section_lines['chorus'][:]
         | 
| 71 | 
             
                    for _ in range(repeat_chorus - 1):
         | 
| 72 | 
             
                        section_lines['chorus'].extend(chorus_block)
         | 
| 73 |  | 
| 74 | 
            -
                # μ μ²΄ λΌμΈ μ μ¬κ³μ°
         | 
| 75 | 
             
                new_total_lines = sum(len(section_lines[sec]) for sec in section_lines)
         | 
| 76 |  | 
| 77 | 
             
                return sections, (sections['verse'] + sections['chorus'] + sections['bridge']), new_total_lines, section_lines
         | 
| 78 |  | 
| 79 | 
            -
             | 
| 80 | 
             
            def calculate_generation_params(lyrics):
         | 
| 81 | 
             
                sections, total_sections, total_lines, section_lines = analyze_lyrics(lyrics)
         | 
| 82 |  | 
| 83 | 
            -
                # κΈ°λ³Έ μκ° κ³μ° (μ΄ λ¨μ)
         | 
| 84 | 
             
                time_per_line = {
         | 
| 85 | 
            -
                    'verse': 4, | 
| 86 | 
            -
                    'chorus': 6, | 
| 87 | 
            -
                    'bridge': 5 | 
| 88 | 
             
                }
         | 
| 89 |  | 
| 90 | 
            -
                # κ° μΉμ
λ³ μμ μκ° κ³μ°
         | 
| 91 | 
             
                section_durations = {}
         | 
| 92 | 
             
                for section_type in ['verse', 'chorus', 'bridge']:
         | 
| 93 | 
            -
                    # κ° μΉμ
μ λΌμΈ μμ ν΄λΉ μΉμ
μ μκ°μ κ³±ν¨
         | 
| 94 | 
             
                    if isinstance(section_lines[section_type], list):
         | 
| 95 | 
             
                        section_durations[section_type] = len(section_lines[section_type]) * time_per_line[section_type]
         | 
| 96 | 
             
                    else:
         | 
| 97 | 
             
                        section_durations[section_type] = section_lines[section_type] * time_per_line[section_type]
         | 
| 98 |  | 
| 99 | 
            -
                # μ μ²΄ μκ° κ³μ°
         | 
| 100 | 
             
                total_duration = sum(duration for duration in section_durations.values())
         | 
| 101 | 
            -
                total_duration = max(60, total_duration) | 
| 102 |  | 
| 103 | 
            -
                 | 
| 104 | 
            -
                 | 
| 105 | 
            -
                tokens_per_line = 200  # μ€λΉ ν ν° μ
         | 
| 106 |  | 
| 107 | 
             
                total_tokens = base_tokens + (total_lines * tokens_per_line)
         | 
| 108 |  | 
| 109 | 
            -
                # μΉμ
 κΈ°λ° μΈκ·Έλ¨ΌνΈ μ κ³μ°
         | 
| 110 | 
             
                if sections['chorus'] > 0:
         | 
| 111 | 
            -
                    num_segments = 3 | 
| 112 | 
             
                else:
         | 
| 113 | 
            -
                    num_segments = 2 | 
| 114 |  | 
| 115 | 
            -
                 | 
| 116 | 
            -
                max_tokens = min(8000, total_tokens)  # μ΅λ 8000 ν ν°μΌλ‘ μ ν
         | 
| 117 |  | 
| 118 | 
             
                return {
         | 
| 119 | 
             
                    'max_tokens': max_tokens,
         | 
| @@ -125,43 +130,15 @@ def calculate_generation_params(lyrics): | |
| 125 | 
             
                    'has_chorus': sections['chorus'] > 0
         | 
| 126 | 
             
                }
         | 
| 127 |  | 
| 128 | 
            -
            def get_audio_duration(file_path):
         | 
| 129 | 
            -
                try:
         | 
| 130 | 
            -
                    import librosa
         | 
| 131 | 
            -
                    duration = librosa.get_duration(path=file_path)
         | 
| 132 | 
            -
                    return duration
         | 
| 133 | 
            -
                except Exception as e:
         | 
| 134 | 
            -
                    logging.error(f"Failed to get audio duration: {e}")
         | 
| 135 | 
            -
                    return None
         | 
| 136 | 
            -
             | 
| 137 | 
            -
            # μΈμ΄ κ°μ§ λ° λͺ¨λΈ μ ν ν¨μ
         | 
| 138 | 
             
            def detect_and_select_model(text):
         | 
| 139 | 
            -
                if re.search(r'[\u3131-\u318E\uAC00-\uD7A3]', text): | 
| 140 | 
             
                    return "m-a-p/YuE-s1-7B-anneal-jp-kr-cot"
         | 
| 141 | 
            -
                elif re.search(r'[\u4e00-\u9fff]', text): | 
| 142 | 
             
                    return "m-a-p/YuE-s1-7B-anneal-zh-cot"
         | 
| 143 | 
            -
                elif re.search(r'[\u3040-\u309F\u30A0-\u30FF]', text): | 
| 144 | 
             
                    return "m-a-p/YuE-s1-7B-anneal-jp-kr-cot"
         | 
| 145 | 
            -
                else:  # μμ΄/κΈ°ν
         | 
| 146 | 
            -
                    return "m-a-p/YuE-s1-7B-anneal-en-cot"
         | 
| 147 | 
            -
             | 
| 148 | 
            -
             | 
| 149 | 
            -
             | 
| 150 | 
            -
            # GPU μ€μ  μ΅μ ν
         | 
| 151 | 
            -
            def optimize_gpu_settings():
         | 
| 152 | 
            -
                if torch.cuda.is_available():
         | 
| 153 | 
            -
                    torch.backends.cuda.matmul.allow_tf32 = True
         | 
| 154 | 
            -
                    torch.backends.cudnn.benchmark = True
         | 
| 155 | 
            -
                    torch.backends.cudnn.deterministic = False
         | 
| 156 | 
            -
                    torch.backends.cudnn.enabled = True
         | 
| 157 | 
            -
                    
         | 
| 158 | 
            -
                    torch.cuda.empty_cache()
         | 
| 159 | 
            -
                    torch.cuda.set_device(0)
         | 
| 160 | 
            -
                    
         | 
| 161 | 
            -
                    logging.info(f"Using GPU: {torch.cuda.get_device_name(0)}")
         | 
| 162 | 
            -
                    logging.info(f"Available GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.2f} GB")
         | 
| 163 | 
             
                else:
         | 
| 164 | 
            -
                     | 
| 165 |  | 
| 166 | 
             
            def install_flash_attn():
         | 
| 167 | 
             
                try:
         | 
| @@ -183,17 +160,13 @@ def install_flash_attn(): | |
| 183 | 
             
                    except ImportError:
         | 
| 184 | 
             
                        logging.info("Installing flash-attn...")
         | 
| 185 |  | 
| 186 | 
            -
                     | 
| 187 | 
            -
                         | 
| 188 | 
            -
             | 
| 189 | 
            -
             | 
| 190 | 
            -
             | 
| 191 | 
            -
             | 
| 192 | 
            -
             | 
| 193 | 
            -
                        return True
         | 
| 194 | 
            -
                    except subprocess.CalledProcessError:
         | 
| 195 | 
            -
                        logging.warning("Failed to install flash-attn via pip, skipping...")
         | 
| 196 | 
            -
                        return False
         | 
| 197 |  | 
| 198 | 
             
                except Exception as e:
         | 
| 199 | 
             
                    logging.warning(f"Failed to install flash-attn: {e}")
         | 
| @@ -201,19 +174,27 @@ def install_flash_attn(): | |
| 201 |  | 
| 202 | 
             
            def initialize_system():
         | 
| 203 | 
             
                optimize_gpu_settings()
         | 
| 204 | 
            -
                has_flash_attn = install_flash_attn()
         | 
| 205 |  | 
| 206 | 
            -
                 | 
| 207 | 
            -
             | 
| 208 | 
            -
             | 
| 209 | 
            -
             | 
| 210 | 
            -
             | 
| 211 | 
            -
             | 
| 212 | 
            -
             | 
| 213 | 
            -
                     | 
| 214 | 
            -
                     | 
| 215 | 
            -
                     | 
| 216 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 217 |  | 
| 218 | 
             
                try:
         | 
| 219 | 
             
                    os.chdir("./inference")
         | 
| @@ -222,7 +203,7 @@ def initialize_system(): | |
| 222 | 
             
                    logging.error(f"Directory error: {e}")
         | 
| 223 | 
             
                    raise
         | 
| 224 |  | 
| 225 | 
            -
            @lru_cache(maxsize= | 
| 226 | 
             
            def get_cached_file_path(content_hash, prefix):
         | 
| 227 | 
             
                return create_temp_file(content_hash, prefix)
         | 
| 228 |  | 
| @@ -254,84 +235,46 @@ def get_last_mp3_file(output_dir): | |
| 254 | 
             
                mp3_files_with_path.sort(key=os.path.getmtime, reverse=True)
         | 
| 255 | 
             
                return mp3_files_with_path[0]
         | 
| 256 |  | 
| 257 | 
            -
            def  | 
| 258 | 
            -
                 | 
| 259 | 
            -
             | 
| 260 | 
            -
             | 
| 261 | 
            -
             | 
| 262 | 
            -
                 | 
| 263 | 
            -
             | 
| 264 | 
            -
             | 
| 265 | 
            -
                tokens_per_segment = params['max_tokens'] // params['num_segments']
         | 
| 266 | 
            -
                
         | 
| 267 | 
            -
                model_config = {
         | 
| 268 | 
            -
                    "m-a-p/YuE-s1-7B-anneal-en-cot": {
         | 
| 269 | 
            -
                        "max_tokens": params['max_tokens'],
         | 
| 270 | 
            -
                        "temperature": 0.8,
         | 
| 271 | 
            -
                        "batch_size": 8,
         | 
| 272 | 
            -
                        "num_segments": params['num_segments'],
         | 
| 273 | 
            -
                        "estimated_duration": params['estimated_duration']
         | 
| 274 | 
            -
                    },
         | 
| 275 | 
            -
                    "m-a-p/YuE-s1-7B-anneal-jp-kr-cot": {
         | 
| 276 | 
            -
                        "max_tokens": params['max_tokens'],
         | 
| 277 | 
            -
                        "temperature": 0.7,
         | 
| 278 | 
            -
                        "batch_size": 8,
         | 
| 279 | 
            -
                        "num_segments": params['num_segments'],
         | 
| 280 | 
            -
                        "estimated_duration": params['estimated_duration']
         | 
| 281 | 
            -
                    },
         | 
| 282 | 
            -
                    "m-a-p/YuE-s1-7B-anneal-zh-cot": {
         | 
| 283 | 
            -
                        "max_tokens": params['max_tokens'],
         | 
| 284 | 
            -
                        "temperature": 0.7,
         | 
| 285 | 
            -
                        "batch_size": 8,
         | 
| 286 | 
            -
                        "num_segments": params['num_segments'],
         | 
| 287 | 
            -
                        "estimated_duration": params['estimated_duration']
         | 
| 288 | 
            -
                    }
         | 
| 289 | 
            -
                }
         | 
| 290 | 
            -
                
         | 
| 291 | 
            -
                # μ½λ¬μ€κ° μλ κ²½μ° ν ν° μ μ¦κ°
         | 
| 292 | 
            -
                if has_chorus:
         | 
| 293 | 
            -
                    for config in model_config.values():
         | 
| 294 | 
            -
                        config['max_tokens'] = int(config['max_tokens'] * 1.5)  # 50% λ λ§μ ν ν° ν λΉ
         | 
| 295 | 
            -
                
         | 
| 296 | 
            -
                return model_path, model_config[model_path], params
         | 
| 297 |  | 
| 298 | 
             
            def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens):
         | 
| 299 | 
             
                genre_txt_path = None
         | 
| 300 | 
             
                lyrics_txt_path = None
         | 
| 301 |  | 
| 302 | 
             
                try:
         | 
| 303 | 
            -
                    # λͺ¨λΈ μ ν λ° μ€μ 
         | 
| 304 | 
             
                    model_path, config, params = optimize_model_selection(lyrics_txt_content, genre_txt_content)
         | 
| 305 | 
             
                    logging.info(f"Selected model: {model_path}")
         | 
| 306 | 
             
                    logging.info(f"Lyrics analysis: {params}")
         | 
| 307 |  | 
| 308 | 
            -
                    # μ½λ¬μ€ μΉμ
 νμΈ λ° λ‘κΉ
         | 
| 309 | 
             
                    has_chorus = params['sections']['chorus'] > 0
         | 
| 310 | 
             
                    estimated_duration = params.get('estimated_duration', 90)
         | 
| 311 | 
            -
             | 
| 312 | 
            -
                    # μΈκ·Έλ¨ΌνΈ μ  | 
| 313 | 
             
                    if has_chorus:
         | 
| 314 | 
            -
                        actual_num_segments = min(4, actual_num_segments + 1)  # μΈκ·Έλ¨ΌνΈ νλ μΆκ°
         | 
| 315 | 
            -
                        actual_max_tokens = min(8000, int(config['max_tokens'] * 1.3))  # 30% μ¦κ°
         | 
| 316 | 
            -
                    else:
         | 
| 317 | 
            -
                        actual_num_segments = min(3, actual_num_segments + 1)
         | 
| 318 | 
             
                        actual_max_tokens = min(8000, int(config['max_tokens'] * 1.2))
         | 
|  | |
|  | |
|  | |
|  | |
| 319 |  | 
| 320 | 
            -
                    
         | 
| 321 | 
            -
             | 
| 322 | 
            -
                    
         | 
| 323 | 
             
                    logging.info(f"Estimated duration: {estimated_duration} seconds")
         | 
| 324 | 
             
                    logging.info(f"Has chorus sections: {has_chorus}")
         | 
| 325 | 
             
                    logging.info(f"Using segments: {actual_num_segments}, tokens: {actual_max_tokens}")
         | 
| 326 |  | 
| 327 | 
            -
                    # μμ νμΌ μμ±
         | 
| 328 | 
             
                    genre_txt_path = create_temp_file(genre_txt_content, prefix="genre_")
         | 
| 329 | 
             
                    lyrics_txt_path = create_temp_file(lyrics_txt_content, prefix="lyrics_")
         | 
| 330 |  | 
| 331 | 
             
                    output_dir = "./output"
         | 
| 332 | 
             
                    os.makedirs(output_dir, exist_ok=True)
         | 
| 333 | 
             
                    empty_output_folder(output_dir)
         | 
| 334 | 
            -
             | 
| 335 | 
             
                    command = [
         | 
| 336 | 
             
                        "python", "infer.py",
         | 
| 337 | 
             
                        "--stage1_model", model_path,
         | 
| @@ -339,19 +282,15 @@ def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens): | |
| 339 | 
             
                        "--genre_txt", genre_txt_path,
         | 
| 340 | 
             
                        "--lyrics_txt", lyrics_txt_path,
         | 
| 341 | 
             
                        "--run_n_segments", str(actual_num_segments),
         | 
| 342 | 
            -
                        "--stage2_batch_size", " | 
| 343 | 
             
                        "--output_dir", output_dir,
         | 
| 344 | 
             
                        "--cuda_idx", "0",
         | 
| 345 | 
            -
                        "--max_new_tokens", str(actual_max_tokens)
         | 
|  | |
|  | |
|  | |
| 346 | 
             
                    ]
         | 
| 347 |  | 
| 348 | 
            -
                    # GPU μ€μ 
         | 
| 349 | 
            -
                    if torch.cuda.is_available():
         | 
| 350 | 
            -
                        command.append("--disable_offload_model")
         | 
| 351 | 
            -
                    # GPU μ€μ 
         | 
| 352 | 
            -
             | 
| 353 | 
            -
             | 
| 354 | 
            -
                    # CUDA νκ²½ λ³μ μ€μ 
         | 
| 355 | 
             
                    env = os.environ.copy()
         | 
| 356 | 
             
                    if torch.cuda.is_available():
         | 
| 357 | 
             
                        env.update({
         | 
| @@ -359,17 +298,11 @@ def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens): | |
| 359 | 
             
                            "CUDA_HOME": "/usr/local/cuda",
         | 
| 360 | 
             
                            "PATH": f"/usr/local/cuda/bin:{env.get('PATH', '')}",
         | 
| 361 | 
             
                            "LD_LIBRARY_PATH": f"/usr/local/cuda/lib64:{env.get('LD_LIBRARY_PATH', '')}",
         | 
| 362 | 
            -
                            "PYTORCH_CUDA_ALLOC_CONF":  | 
|  | |
|  | |
| 363 | 
             
                        })
         | 
| 364 |  | 
| 365 | 
            -
                    # transformers μΊμ λ§μ΄κ·Έλ μ΄μ
 μ²λ¦¬
         | 
| 366 | 
            -
                    try:
         | 
| 367 | 
            -
                        from transformers.utils import move_cache
         | 
| 368 | 
            -
                        move_cache()
         | 
| 369 | 
            -
                    except Exception as e:
         | 
| 370 | 
            -
                        logging.warning(f"Cache migration warning (non-critical): {e}")
         | 
| 371 | 
            -
             | 
| 372 | 
            -
                    # λͺ
λ Ή μ€ν
         | 
| 373 | 
             
                    process = subprocess.run(
         | 
| 374 | 
             
                        command,
         | 
| 375 | 
             
                        env=env,
         | 
| @@ -378,7 +311,6 @@ def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens): | |
| 378 | 
             
                        text=True
         | 
| 379 | 
             
                    )
         | 
| 380 |  | 
| 381 | 
            -
                    # μ€ν κ²°κ³Ό λ‘κΉ
         | 
| 382 | 
             
                    logging.info(f"Command output: {process.stdout}")
         | 
| 383 | 
             
                    if process.stderr:
         | 
| 384 | 
             
                        logging.error(f"Command error: {process.stderr}")
         | 
| @@ -388,7 +320,6 @@ def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens): | |
| 388 | 
             
                        logging.error(f"Command: {' '.join(command)}")
         | 
| 389 | 
             
                        raise RuntimeError(f"Inference failed: {process.stderr}")
         | 
| 390 |  | 
| 391 | 
            -
                    # κ²°κ³Ό μ²λ¦¬
         | 
| 392 | 
             
                    last_mp3 = get_last_mp3_file(output_dir)
         | 
| 393 | 
             
                    if last_mp3:
         | 
| 394 | 
             
                        try:
         | 
| @@ -398,7 +329,6 @@ def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens): | |
| 398 | 
             
                                logging.info(f"Audio duration: {duration:.2f} seconds")
         | 
| 399 | 
             
                                logging.info(f"Expected duration: {estimated_duration} seconds")
         | 
| 400 |  | 
| 401 | 
            -
                                # μμ±λ μμ
μ΄ λ무 μ§§μ κ²½μ° κ²½κ³ 
         | 
| 402 | 
             
                                if duration < estimated_duration * 0.8:
         | 
| 403 | 
             
                                    logging.warning(f"Generated audio is shorter than expected: {duration:.2f}s < {estimated_duration:.2f}s")
         | 
| 404 | 
             
                        except Exception as e:
         | 
| @@ -412,27 +342,55 @@ def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens): | |
| 412 | 
             
                    logging.error(f"Inference error: {e}")
         | 
| 413 | 
             
                    raise
         | 
| 414 | 
             
                finally:
         | 
| 415 | 
            -
                     | 
| 416 | 
            -
             | 
| 417 | 
            -
             | 
| 418 | 
            -
             | 
| 419 | 
            -
             | 
| 420 | 
            -
             | 
| 421 | 
            -
             | 
| 422 | 
            -
             | 
| 423 | 
            -
             | 
| 424 | 
            -
             | 
| 425 | 
            -
             | 
| 426 | 
            -
             | 
| 427 | 
            -
             | 
| 428 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 429 |  | 
| 430 | 
             
            def main():
         | 
| 431 | 
            -
                # Gradio μΈν°νμ΄μ€
         | 
| 432 | 
             
                with gr.Blocks() as demo:
         | 
| 433 | 
             
                    with gr.Column():
         | 
| 434 | 
             
                        gr.Markdown("# Open SUNO: Full-Song Generation (Multi-Language Support)")
         | 
| 435 | 
            -
             | 
| 436 |  | 
| 437 | 
             
                        with gr.Row():
         | 
| 438 | 
             
                            with gr.Column():
         | 
| @@ -469,10 +427,8 @@ def main(): | |
| 469 | 
             
                                submit_btn = gr.Button("Generate Music", variant="primary")
         | 
| 470 | 
             
                                music_out = gr.Audio(label="Generated Audio")
         | 
| 471 |  | 
| 472 | 
            -
                        # λ€κ΅μ΄ μμ 
         | 
| 473 | 
             
                        gr.Examples(
         | 
| 474 | 
             
                            examples=[
         | 
| 475 | 
            -
                                # μμ΄ μμ 
         | 
| 476 | 
             
                                [
         | 
| 477 | 
             
                                    "female blues airy vocal bright vocal piano sad romantic guitar jazz",
         | 
| 478 | 
             
                                    """[verse]
         | 
| @@ -497,36 +453,27 @@ Guiding me back homeward, making my heart rejoice | |
| 497 | 
             
            Don't let this moment fade, hold me close tonight
         | 
| 498 | 
             
            With you here beside me, everything's alright
         | 
| 499 | 
             
            Can't imagine life alone, don't want to let you go
         | 
| 500 | 
            -
            Stay with me forever, let our love just flow
         | 
| 501 | 
            -
                                    """
         | 
| 502 | 
             
                                ],
         | 
| 503 | 
            -
                                # νκ΅μ΄ μμ 
         | 
| 504 | 
             
                                [
         | 
| 505 | 
             
                                    "K-pop bright energetic synth dance electronic",
         | 
| 506 | 
             
                                    """[verse]
         | 
| 507 | 
             
            μΈμ  κ° λ§μ£Όν λλΉ μμμ
         | 
| 508 | 
            -
            μ°λ¦° μλ‘λ₯Ό μμ보μμ§
         | 
| 509 |  | 
| 510 | 
             
            [chorus]
         | 
| 511 | 
             
            λ€μ ν λ² λ΄κ² λ§ν΄μ€
         | 
| 512 | 
            -
            λμ μ§μ¬μ μ¨κΈ°μ§ λ§μ μ€
         | 
| 513 |  | 
| 514 | 
             
            [verse]
         | 
| 515 | 
             
            μ΄λμ΄ λ°€μ μ§λ  λλ§λ€
         | 
| 516 | 
            -
            λμ λͺ©μ리λ₯Ό λ μ¬λ €
         | 
| 517 |  | 
| 518 | 
             
            [chorus]
         | 
| 519 | 
             
            λ€μ ν λ² λ΄κ² λ§ν΄μ€
         | 
| 520 | 
            -
             | 
| 521 | 
            -
             | 
| 522 | 
            -
             | 
| 523 | 
            -
                                    """
         | 
| 524 | 
             
                                ]
         | 
| 525 | 
             
                            ],
         | 
| 526 | 
             
                            inputs=[genre_txt, lyrics_txt]
         | 
| 527 | 
             
                        )
         | 
| 528 |  | 
| 529 | 
            -
                    # μμ€ν
 μ΄κΈ°ν
         | 
| 530 | 
             
                    initialize_system()
         | 
| 531 |  | 
| 532 | 
             
                    def update_info(lyrics):
         | 
| @@ -540,9 +487,6 @@ Stay with me forever, let our love just flow | |
| 540 | 
             
                            f"Verses: {sections['verse']}, Chorus: {sections['chorus']} (Expected full length including chorus)"
         | 
| 541 | 
             
                        )
         | 
| 542 |  | 
| 543 | 
            -
                    
         | 
| 544 | 
            -
             | 
| 545 | 
            -
                    # μ΄λ²€νΈ νΈλ€λ¬
         | 
| 546 | 
             
                    lyrics_txt.change(
         | 
| 547 | 
             
                        fn=update_info,
         | 
| 548 | 
             
                        inputs=[lyrics_txt],
         | 
| @@ -565,5 +509,8 @@ if __name__ == "__main__": | |
| 565 | 
             
                    share=True,
         | 
| 566 | 
             
                    show_api=True,
         | 
| 567 | 
             
                    show_error=True,
         | 
| 568 | 
            -
                    max_threads= | 
| 569 | 
            -
             | 
|  | |
|  | |
|  | 
|  | |
| 20 | 
             
                ]
         | 
| 21 | 
             
            )
         | 
| 22 |  | 
| 23 | 
            +
            def optimize_gpu_settings():
         | 
| 24 | 
            +
                if torch.cuda.is_available():
         | 
| 25 | 
            +
                    # GPU λ©λͺ¨λ¦¬ κ΄λ¦¬ μ΅μ ν
         | 
| 26 | 
            +
                    torch.backends.cuda.matmul.allow_tf32 = True
         | 
| 27 | 
            +
                    torch.backends.cudnn.benchmark = True
         | 
| 28 | 
            +
                    torch.backends.cudnn.enabled = True
         | 
| 29 | 
            +
                    torch.backends.cudnn.deterministic = False
         | 
| 30 | 
            +
                    
         | 
| 31 | 
            +
                    # L40Sμ μ΅μ νλ λ©λͺ¨λ¦¬ μ€μ 
         | 
| 32 | 
            +
                    torch.cuda.empty_cache()
         | 
| 33 | 
            +
                    torch.cuda.set_device(0)
         | 
| 34 | 
            +
                    
         | 
| 35 | 
            +
                    # CUDA μ€νΈλ¦Ό μ΅μ ν
         | 
| 36 | 
            +
                    torch.cuda.Stream(0)
         | 
| 37 | 
            +
                    
         | 
| 38 | 
            +
                    # λ©λͺ¨λ¦¬ ν λΉ μ΅μ ν
         | 
| 39 | 
            +
                    os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'
         | 
| 40 | 
            +
                    
         | 
| 41 | 
            +
                    logging.info(f"Using GPU: {torch.cuda.get_device_name(0)}")
         | 
| 42 | 
            +
                    logging.info(f"Available GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.2f} GB")
         | 
| 43 | 
            +
                    
         | 
| 44 | 
            +
                    # L40S νΉν μ€μ 
         | 
| 45 | 
            +
                    if 'L40S' in torch.cuda.get_device_name(0):
         | 
| 46 | 
            +
                        torch.cuda.set_per_process_memory_fraction(0.95)
         | 
| 47 | 
            +
             | 
| 48 | 
             
            def analyze_lyrics(lyrics, repeat_chorus=2):
         | 
| 49 | 
             
                lines = [line.strip() for line in lyrics.split('\n') if line.strip()]
         | 
| 50 |  | 
|  | |
| 61 | 
             
                    'chorus': [],
         | 
| 62 | 
             
                    'bridge': []
         | 
| 63 | 
             
                }
         | 
|  | |
|  | |
|  | |
| 64 |  | 
| 65 | 
            +
                for line in lines:
         | 
| 66 | 
             
                    lower_line = line.lower()
         | 
| 67 | 
             
                    if '[verse]' in lower_line:
         | 
|  | |
|  | |
| 68 | 
             
                        current_section = 'verse'
         | 
| 69 | 
             
                        sections['verse'] += 1
         | 
| 70 | 
            +
                        continue
         | 
| 71 | 
             
                    elif '[chorus]' in lower_line:
         | 
|  | |
|  | |
| 72 | 
             
                        current_section = 'chorus'
         | 
| 73 | 
             
                        sections['chorus'] += 1
         | 
| 74 | 
            +
                        continue
         | 
| 75 | 
             
                    elif '[bridge]' in lower_line:
         | 
|  | |
|  | |
| 76 | 
             
                        current_section = 'bridge'
         | 
| 77 | 
             
                        sections['bridge'] += 1
         | 
| 78 | 
            +
                        continue
         | 
| 79 |  | 
| 80 | 
            +
                    if current_section:
         | 
| 81 | 
            +
                        section_lines[current_section].append(line)
         | 
|  | |
| 82 |  | 
|  | |
| 83 | 
             
                if sections['chorus'] == 1 and repeat_chorus > 1:
         | 
| 84 | 
             
                    chorus_block = section_lines['chorus'][:]
         | 
| 85 | 
             
                    for _ in range(repeat_chorus - 1):
         | 
| 86 | 
             
                        section_lines['chorus'].extend(chorus_block)
         | 
| 87 |  | 
|  | |
| 88 | 
             
                new_total_lines = sum(len(section_lines[sec]) for sec in section_lines)
         | 
| 89 |  | 
| 90 | 
             
                return sections, (sections['verse'] + sections['chorus'] + sections['bridge']), new_total_lines, section_lines
         | 
| 91 |  | 
|  | |
| 92 | 
             
            def calculate_generation_params(lyrics):
         | 
| 93 | 
             
                sections, total_sections, total_lines, section_lines = analyze_lyrics(lyrics)
         | 
| 94 |  | 
|  | |
| 95 | 
             
                time_per_line = {
         | 
| 96 | 
            +
                    'verse': 4,
         | 
| 97 | 
            +
                    'chorus': 6,
         | 
| 98 | 
            +
                    'bridge': 5
         | 
| 99 | 
             
                }
         | 
| 100 |  | 
|  | |
| 101 | 
             
                section_durations = {}
         | 
| 102 | 
             
                for section_type in ['verse', 'chorus', 'bridge']:
         | 
|  | |
| 103 | 
             
                    if isinstance(section_lines[section_type], list):
         | 
| 104 | 
             
                        section_durations[section_type] = len(section_lines[section_type]) * time_per_line[section_type]
         | 
| 105 | 
             
                    else:
         | 
| 106 | 
             
                        section_durations[section_type] = section_lines[section_type] * time_per_line[section_type]
         | 
| 107 |  | 
|  | |
| 108 | 
             
                total_duration = sum(duration for duration in section_durations.values())
         | 
| 109 | 
            +
                total_duration = max(60, total_duration)
         | 
| 110 |  | 
| 111 | 
            +
                base_tokens = 3000
         | 
| 112 | 
            +
                tokens_per_line = 200
         | 
|  | |
| 113 |  | 
| 114 | 
             
                total_tokens = base_tokens + (total_lines * tokens_per_line)
         | 
| 115 |  | 
|  | |
| 116 | 
             
                if sections['chorus'] > 0:
         | 
| 117 | 
            +
                    num_segments = 3
         | 
| 118 | 
             
                else:
         | 
| 119 | 
            +
                    num_segments = 2
         | 
| 120 |  | 
| 121 | 
            +
                max_tokens = min(8000, total_tokens)
         | 
|  | |
| 122 |  | 
| 123 | 
             
                return {
         | 
| 124 | 
             
                    'max_tokens': max_tokens,
         | 
|  | |
| 130 | 
             
                    'has_chorus': sections['chorus'] > 0
         | 
| 131 | 
             
                }
         | 
| 132 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 133 | 
             
            def detect_and_select_model(text):
         | 
| 134 | 
            +
                if re.search(r'[\u3131-\u318E\uAC00-\uD7A3]', text):
         | 
| 135 | 
             
                    return "m-a-p/YuE-s1-7B-anneal-jp-kr-cot"
         | 
| 136 | 
            +
                elif re.search(r'[\u4e00-\u9fff]', text):
         | 
| 137 | 
             
                    return "m-a-p/YuE-s1-7B-anneal-zh-cot"
         | 
| 138 | 
            +
                elif re.search(r'[\u3040-\u309F\u30A0-\u30FF]', text):
         | 
| 139 | 
             
                    return "m-a-p/YuE-s1-7B-anneal-jp-kr-cot"
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 140 | 
             
                else:
         | 
| 141 | 
            +
                    return "m-a-p/YuE-s1-7B-anneal-en-cot"
         | 
| 142 |  | 
| 143 | 
             
            def install_flash_attn():
         | 
| 144 | 
             
                try:
         | 
|  | |
| 160 | 
             
                    except ImportError:
         | 
| 161 | 
             
                        logging.info("Installing flash-attn...")
         | 
| 162 |  | 
| 163 | 
            +
                    subprocess.run(
         | 
| 164 | 
            +
                        ["pip", "install", "flash-attn", "--no-build-isolation"],
         | 
| 165 | 
            +
                        check=True,
         | 
| 166 | 
            +
                        capture_output=True
         | 
| 167 | 
            +
                    )
         | 
| 168 | 
            +
                    logging.info("flash-attn installed successfully!")
         | 
| 169 | 
            +
                    return True
         | 
|  | |
|  | |
|  | |
|  | |
| 170 |  | 
| 171 | 
             
                except Exception as e:
         | 
| 172 | 
             
                    logging.warning(f"Failed to install flash-attn: {e}")
         | 
|  | |
| 174 |  | 
| 175 | 
             
            def initialize_system():
         | 
| 176 | 
             
                optimize_gpu_settings()
         | 
|  | |
| 177 |  | 
| 178 | 
            +
                with ThreadPoolExecutor(max_workers=4) as executor:
         | 
| 179 | 
            +
                    futures = []
         | 
| 180 | 
            +
                    
         | 
| 181 | 
            +
                    futures.append(executor.submit(install_flash_attn))
         | 
| 182 | 
            +
                    
         | 
| 183 | 
            +
                    from huggingface_hub import snapshot_download
         | 
| 184 | 
            +
                    
         | 
| 185 | 
            +
                    folder_path = './inference/xcodec_mini_infer'
         | 
| 186 | 
            +
                    os.makedirs(folder_path, exist_ok=True)
         | 
| 187 | 
            +
                    logging.info(f"Created folder at: {folder_path}")
         | 
| 188 | 
            +
             | 
| 189 | 
            +
                    futures.append(executor.submit(
         | 
| 190 | 
            +
                        snapshot_download,
         | 
| 191 | 
            +
                        repo_id="m-a-p/xcodec_mini_infer",
         | 
| 192 | 
            +
                        local_dir="./inference/xcodec_mini_infer",
         | 
| 193 | 
            +
                        resume_download=True
         | 
| 194 | 
            +
                    ))
         | 
| 195 | 
            +
                    
         | 
| 196 | 
            +
                    for future in futures:
         | 
| 197 | 
            +
                        future.result()
         | 
| 198 |  | 
| 199 | 
             
                try:
         | 
| 200 | 
             
                    os.chdir("./inference")
         | 
|  | |
| 203 | 
             
                    logging.error(f"Directory error: {e}")
         | 
| 204 | 
             
                    raise
         | 
| 205 |  | 
| 206 | 
            +
            @lru_cache(maxsize=100)
         | 
| 207 | 
             
            def get_cached_file_path(content_hash, prefix):
         | 
| 208 | 
             
                return create_temp_file(content_hash, prefix)
         | 
| 209 |  | 
|  | |
| 235 | 
             
                mp3_files_with_path.sort(key=os.path.getmtime, reverse=True)
         | 
| 236 | 
             
                return mp3_files_with_path[0]
         | 
| 237 |  | 
| 238 | 
            +
            def get_audio_duration(file_path):
         | 
| 239 | 
            +
                try:
         | 
| 240 | 
            +
                    import librosa
         | 
| 241 | 
            +
                    duration = librosa.get_duration(path=file_path)
         | 
| 242 | 
            +
                    return duration
         | 
| 243 | 
            +
                except Exception as e:
         | 
| 244 | 
            +
                    logging.error(f"Failed to get audio duration: {e}")
         | 
| 245 | 
            +
                    return None
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 246 |  | 
| 247 | 
             
            def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens):
         | 
| 248 | 
             
                genre_txt_path = None
         | 
| 249 | 
             
                lyrics_txt_path = None
         | 
| 250 |  | 
| 251 | 
             
                try:
         | 
|  | |
| 252 | 
             
                    model_path, config, params = optimize_model_selection(lyrics_txt_content, genre_txt_content)
         | 
| 253 | 
             
                    logging.info(f"Selected model: {model_path}")
         | 
| 254 | 
             
                    logging.info(f"Lyrics analysis: {params}")
         | 
| 255 |  | 
|  | |
| 256 | 
             
                    has_chorus = params['sections']['chorus'] > 0
         | 
| 257 | 
             
                    estimated_duration = params.get('estimated_duration', 90)
         | 
| 258 | 
            +
                    
         | 
| 259 | 
            +
                    # μΈκ·Έλ¨ΌνΈ λ° ν ν° μ μ€μ 
         | 
| 260 | 
             
                    if has_chorus:
         | 
|  | |
|  | |
|  | |
|  | |
| 261 | 
             
                        actual_max_tokens = min(8000, int(config['max_tokens'] * 1.2))
         | 
| 262 | 
            +
                        actual_num_segments = min(4, params['num_segments'] + 1)
         | 
| 263 | 
            +
                    else:
         | 
| 264 | 
            +
                        actual_max_tokens = config['max_tokens']
         | 
| 265 | 
            +
                        actual_num_segments = params['num_segments']
         | 
| 266 |  | 
|  | |
|  | |
|  | |
| 267 | 
             
                    logging.info(f"Estimated duration: {estimated_duration} seconds")
         | 
| 268 | 
             
                    logging.info(f"Has chorus sections: {has_chorus}")
         | 
| 269 | 
             
                    logging.info(f"Using segments: {actual_num_segments}, tokens: {actual_max_tokens}")
         | 
| 270 |  | 
|  | |
| 271 | 
             
                    genre_txt_path = create_temp_file(genre_txt_content, prefix="genre_")
         | 
| 272 | 
             
                    lyrics_txt_path = create_temp_file(lyrics_txt_content, prefix="lyrics_")
         | 
| 273 |  | 
| 274 | 
             
                    output_dir = "./output"
         | 
| 275 | 
             
                    os.makedirs(output_dir, exist_ok=True)
         | 
| 276 | 
             
                    empty_output_folder(output_dir)
         | 
| 277 | 
            +
             | 
| 278 | 
             
                    command = [
         | 
| 279 | 
             
                        "python", "infer.py",
         | 
| 280 | 
             
                        "--stage1_model", model_path,
         | 
|  | |
| 282 | 
             
                        "--genre_txt", genre_txt_path,
         | 
| 283 | 
             
                        "--lyrics_txt", lyrics_txt_path,
         | 
| 284 | 
             
                        "--run_n_segments", str(actual_num_segments),
         | 
| 285 | 
            +
                        "--stage2_batch_size", "16",
         | 
| 286 | 
             
                        "--output_dir", output_dir,
         | 
| 287 | 
             
                        "--cuda_idx", "0",
         | 
| 288 | 
            +
                        "--max_new_tokens", str(actual_max_tokens),
         | 
| 289 | 
            +
                        "--use_flash_attention", "True",
         | 
| 290 | 
            +
                        "--use_bettertransformer", "True",
         | 
| 291 | 
            +
                        "--use_compile", "True"
         | 
| 292 | 
             
                    ]
         | 
| 293 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 294 | 
             
                    env = os.environ.copy()
         | 
| 295 | 
             
                    if torch.cuda.is_available():
         | 
| 296 | 
             
                        env.update({
         | 
|  | |
| 298 | 
             
                            "CUDA_HOME": "/usr/local/cuda",
         | 
| 299 | 
             
                            "PATH": f"/usr/local/cuda/bin:{env.get('PATH', '')}",
         | 
| 300 | 
             
                            "LD_LIBRARY_PATH": f"/usr/local/cuda/lib64:{env.get('LD_LIBRARY_PATH', '')}",
         | 
| 301 | 
            +
                            "PYTORCH_CUDA_ALLOC_CONF": "max_split_size_mb:512",
         | 
| 302 | 
            +
                            "CUDA_LAUNCH_BLOCKING": "0",
         | 
| 303 | 
            +
                            "TORCH_DISTRIBUTED_DEBUG": "DETAIL"
         | 
| 304 | 
             
                        })
         | 
| 305 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 306 | 
             
                    process = subprocess.run(
         | 
| 307 | 
             
                        command,
         | 
| 308 | 
             
                        env=env,
         | 
|  | |
| 311 | 
             
                        text=True
         | 
| 312 | 
             
                    )
         | 
| 313 |  | 
|  | |
| 314 | 
             
                    logging.info(f"Command output: {process.stdout}")
         | 
| 315 | 
             
                    if process.stderr:
         | 
| 316 | 
             
                        logging.error(f"Command error: {process.stderr}")
         | 
|  | |
| 320 | 
             
                        logging.error(f"Command: {' '.join(command)}")
         | 
| 321 | 
             
                        raise RuntimeError(f"Inference failed: {process.stderr}")
         | 
| 322 |  | 
|  | |
| 323 | 
             
                    last_mp3 = get_last_mp3_file(output_dir)
         | 
| 324 | 
             
                    if last_mp3:
         | 
| 325 | 
             
                        try:
         | 
|  | |
| 329 | 
             
                                logging.info(f"Audio duration: {duration:.2f} seconds")
         | 
| 330 | 
             
                                logging.info(f"Expected duration: {estimated_duration} seconds")
         | 
| 331 |  | 
|  | |
| 332 | 
             
                                if duration < estimated_duration * 0.8:
         | 
| 333 | 
             
                                    logging.warning(f"Generated audio is shorter than expected: {duration:.2f}s < {estimated_duration:.2f}s")
         | 
| 334 | 
             
                        except Exception as e:
         | 
|  | |
| 342 | 
             
                    logging.error(f"Inference error: {e}")
         | 
| 343 | 
             
                    raise
         | 
| 344 | 
             
                finally:
         | 
| 345 | 
            +
                    for path in [genre_txt_path, lyrics_txt_path]:
         | 
| 346 | 
            +
                        if path and os.path.exists(path):
         | 
| 347 | 
            +
                            try:
         | 
| 348 | 
            +
                                os.remove(path)
         | 
| 349 | 
            +
                                logging.debug(f"Removed temporary file: {path}")
         | 
| 350 | 
            +
                            except Exception as e:
         | 
| 351 | 
            +
                                logging.warning(f"Failed to remove temporary file {path}: {e}")
         | 
| 352 | 
            +
             | 
| 353 | 
            +
            def optimize_model_selection(lyrics, genre):
         | 
| 354 | 
            +
                model_path = detect_and_select_model(lyrics)
         | 
| 355 | 
            +
                params = calculate_generation_params(lyrics)
         | 
| 356 | 
            +
                
         | 
| 357 | 
            +
                has_chorus = params['sections']['chorus'] > 0
         | 
| 358 | 
            +
                tokens_per_segment = params['max_tokens'] // params['num_segments']
         | 
| 359 | 
            +
                
         | 
| 360 | 
            +
                model_config = {
         | 
| 361 | 
            +
                    "m-a-p/YuE-s1-7B-anneal-en-cot": {
         | 
| 362 | 
            +
                        "max_tokens": params['max_tokens'],
         | 
| 363 | 
            +
                        "temperature": 0.8,
         | 
| 364 | 
            +
                        "batch_size": 16,
         | 
| 365 | 
            +
                        "num_segments": params['num_segments'],
         | 
| 366 | 
            +
                        "estimated_duration": params['estimated_duration']
         | 
| 367 | 
            +
                    },
         | 
| 368 | 
            +
                    "m-a-p/YuE-s1-7B-anneal-jp-kr-cot": {
         | 
| 369 | 
            +
                        "max_tokens": params['max_tokens'],
         | 
| 370 | 
            +
                        "temperature": 0.7,
         | 
| 371 | 
            +
                        "batch_size": 16,
         | 
| 372 | 
            +
                        "num_segments": params['num_segments'],
         | 
| 373 | 
            +
                        "estimated_duration": params['estimated_duration']
         | 
| 374 | 
            +
                    },
         | 
| 375 | 
            +
                    "m-a-p/YuE-s1-7B-anneal-zh-cot": {
         | 
| 376 | 
            +
                        "max_tokens": params['max_tokens'],
         | 
| 377 | 
            +
                        "temperature": 0.7,
         | 
| 378 | 
            +
                        "batch_size": 16,
         | 
| 379 | 
            +
                        "num_segments": params['num_segments'],
         | 
| 380 | 
            +
                        "estimated_duration": params['estimated_duration']
         | 
| 381 | 
            +
                    }
         | 
| 382 | 
            +
                }
         | 
| 383 | 
            +
                
         | 
| 384 | 
            +
                if has_chorus:
         | 
| 385 | 
            +
                    for config in model_config.values():
         | 
| 386 | 
            +
                        config['max_tokens'] = int(config['max_tokens'] * 1.5)
         | 
| 387 | 
            +
                
         | 
| 388 | 
            +
                return model_path, model_config[model_path], params
         | 
| 389 |  | 
| 390 | 
             
            def main():
         | 
|  | |
| 391 | 
             
                with gr.Blocks() as demo:
         | 
| 392 | 
             
                    with gr.Column():
         | 
| 393 | 
             
                        gr.Markdown("# Open SUNO: Full-Song Generation (Multi-Language Support)")
         | 
|  | |
| 394 |  | 
| 395 | 
             
                        with gr.Row():
         | 
| 396 | 
             
                            with gr.Column():
         | 
|  | |
| 427 | 
             
                                submit_btn = gr.Button("Generate Music", variant="primary")
         | 
| 428 | 
             
                                music_out = gr.Audio(label="Generated Audio")
         | 
| 429 |  | 
|  | |
| 430 | 
             
                        gr.Examples(
         | 
| 431 | 
             
                            examples=[
         | 
|  | |
| 432 | 
             
                                [
         | 
| 433 | 
             
                                    "female blues airy vocal bright vocal piano sad romantic guitar jazz",
         | 
| 434 | 
             
                                    """[verse]
         | 
|  | |
| 453 | 
             
            Don't let this moment fade, hold me close tonight
         | 
| 454 | 
             
            With you here beside me, everything's alright
         | 
| 455 | 
             
            Can't imagine life alone, don't want to let you go
         | 
| 456 | 
            +
            Stay with me forever, let our love just flow"""
         | 
|  | |
| 457 | 
             
                                ],
         | 
|  | |
| 458 | 
             
                                [
         | 
| 459 | 
             
                                    "K-pop bright energetic synth dance electronic",
         | 
| 460 | 
             
                                    """[verse]
         | 
| 461 | 
             
            μΈμ  κ° λ§μ£Όν λλΉ μμμ
         | 
|  | |
| 462 |  | 
| 463 | 
             
            [chorus]
         | 
| 464 | 
             
            λ€μ ν λ² λ΄κ² λ§ν΄μ€
         | 
|  | |
| 465 |  | 
| 466 | 
             
            [verse]
         | 
| 467 | 
             
            μ΄λμ΄ λ°€μ μ§λ  λλ§λ€
         | 
|  | |
| 468 |  | 
| 469 | 
             
            [chorus]
         | 
| 470 | 
             
            λ€μ ν λ² λ΄κ² λ§ν΄μ€
         | 
| 471 | 
            +
            """
         | 
|  | |
|  | |
|  | |
| 472 | 
             
                                ]
         | 
| 473 | 
             
                            ],
         | 
| 474 | 
             
                            inputs=[genre_txt, lyrics_txt]
         | 
| 475 | 
             
                        )
         | 
| 476 |  | 
|  | |
| 477 | 
             
                    initialize_system()
         | 
| 478 |  | 
| 479 | 
             
                    def update_info(lyrics):
         | 
|  | |
| 487 | 
             
                            f"Verses: {sections['verse']}, Chorus: {sections['chorus']} (Expected full length including chorus)"
         | 
| 488 | 
             
                        )
         | 
| 489 |  | 
|  | |
|  | |
|  | |
| 490 | 
             
                    lyrics_txt.change(
         | 
| 491 | 
             
                        fn=update_info,
         | 
| 492 | 
             
                        inputs=[lyrics_txt],
         | 
|  | |
| 509 | 
             
                    share=True,
         | 
| 510 | 
             
                    show_api=True,
         | 
| 511 | 
             
                    show_error=True,
         | 
| 512 | 
            +
                    max_threads=8,
         | 
| 513 | 
            +
                    enable_queue=True,
         | 
| 514 | 
            +
                    cache_examples=True,
         | 
| 515 | 
            +
                    analytics_enabled=False
         | 
| 516 | 
            +
                )
         | 
 
			
