OpenSUNO / app.py
ginipick's picture
Update app.py
c8a3a02 verified
raw
history blame
17.6 kB
import gradio as gr
import subprocess
import os
import shutil
import tempfile
import torch
import logging
import numpy as np
import re
from concurrent.futures import ThreadPoolExecutor
from functools import lru_cache
# ๋กœ๊น… ์„ค์ •
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('yue_generation.log'),
logging.StreamHandler()
]
)
# ๊ฐ€์‚ฌ ๋ถ„์„ ํ•จ์ˆ˜
def analyze_lyrics(lyrics):
# ์ค„ ๋‹จ์œ„๋กœ ๋ถ„๋ฆฌ
lines = [line.strip() for line in lyrics.split('\n') if line.strip()]
# ์„น์…˜ ์นด์šดํŠธ
sections = {
'verse': 0,
'chorus': 0,
'bridge': 0,
'total_lines': len(lines)
}
current_section = None
section_lines = {
'verse': 0,
'chorus': 0,
'bridge': 0
}
for line in lines:
lower_line = line.lower()
if '[verse]' in lower_line:
current_section = 'verse'
sections['verse'] += 1
elif '[chorus]' in lower_line:
current_section = 'chorus'
sections['chorus'] += 1
elif '[bridge]' in lower_line:
current_section = 'bridge'
sections['bridge'] += 1
elif current_section and line.strip():
section_lines[current_section] += 1
# ์ด ์„น์…˜ ์ˆ˜ ๊ณ„์‚ฐ
total_sections = sections['verse'] + sections['chorus'] + sections['bridge']
return sections, total_sections, len(lines), section_lines
def calculate_generation_params(lyrics):
sections, total_sections, total_lines, section_lines = analyze_lyrics(lyrics)
# ๊ธฐ๋ณธ ํ† ํฐ ์ˆ˜ ๊ณ„์‚ฐ (1ํ† ํฐ โ‰ˆ 0.02์ดˆ ๊ธฐ์ค€)
seconds_per_line = 3 # ํ•œ ์ค„๋‹น ํ‰๊ท  3์ดˆ
target_duration = 0 # ๋ชฉํ‘œ ๊ธธ์ด (์ดˆ)
# ๊ฐ ์„น์…˜๋ณ„ ์‹œ๊ฐ„ ๊ณ„์‚ฐ
for section_type in ['verse', 'chorus', 'bridge']:
lines = section_lines[section_type]
if section_type == 'chorus':
# ์ฝ”๋Ÿฌ์Šค๋Š” ๋” ๊ธด ์‹œ๊ฐ„ ํ• ๋‹น
target_duration += lines * seconds_per_line * 1.5
else:
target_duration += lines * seconds_per_line
# ํ† ํฐ ์ˆ˜ ๊ณ„์‚ฐ (1์ดˆ๋‹น ์•ฝ 50ํ† ํฐ)
tokens_per_second = 50
total_tokens = int(target_duration * tokens_per_second)
# ์„น์…˜ ๊ธฐ๋ฐ˜ ์„ธ๊ทธ๋จผํŠธ ์ˆ˜ ๊ณ„์‚ฐ
if target_duration > 180: # 3๋ถ„ ์ด์ƒ
num_segments = 4
elif target_duration > 120: # 2๋ถ„ ์ด์ƒ
num_segments = 3
else:
num_segments = 2
# ํ† ํฐ ์ˆ˜ ์ œํ•œ
max_tokens = min(32000, max(3000, total_tokens))
return {
'max_tokens': max_tokens,
'num_segments': num_segments,
'sections': sections,
'section_lines': section_lines,
'estimated_duration': target_duration
}
def get_audio_duration(file_path):
try:
import librosa
duration = librosa.get_duration(path=file_path)
return duration
except Exception as e:
logging.error(f"Failed to get audio duration: {e}")
return None
# ์–ธ์–ด ๊ฐ์ง€ ๋ฐ ๋ชจ๋ธ ์„ ํƒ ํ•จ์ˆ˜
def detect_and_select_model(text):
if re.search(r'[\u3131-\u318E\uAC00-\uD7A3]', text): # ํ•œ๊ธ€
return "m-a-p/YuE-s1-7B-anneal-jp-kr-cot"
elif re.search(r'[\u4e00-\u9fff]', text): # ์ค‘๊ตญ์–ด
return "m-a-p/YuE-s1-7B-anneal-zh-cot"
elif re.search(r'[\u3040-\u309F\u30A0-\u30FF]', text): # ์ผ๋ณธ์–ด
return "m-a-p/YuE-s1-7B-anneal-jp-kr-cot"
else: # ์˜์–ด/๊ธฐํƒ€
return "m-a-p/YuE-s1-7B-anneal-en-cot"
def optimize_model_selection(lyrics, genre):
model_path = detect_and_select_model(lyrics)
params = calculate_generation_params(lyrics)
model_config = {
"m-a-p/YuE-s1-7B-anneal-en-cot": {
"max_tokens": params['max_tokens'],
"temperature": 0.8,
"batch_size": 8,
"num_segments": params['num_segments'],
"chorus_strength": 1.2 if params['sections']['chorus'] > 0 else 1.0
},
"m-a-p/YuE-s1-7B-anneal-jp-kr-cot": {
"max_tokens": params['max_tokens'],
"temperature": 0.7,
"batch_size": 8,
"num_segments": params['num_segments'],
"chorus_strength": 1.2 if params['sections']['chorus'] > 0 else 1.0
},
"m-a-p/YuE-s1-7B-anneal-zh-cot": {
"max_tokens": params['max_tokens'],
"temperature": 0.7,
"batch_size": 8,
"num_segments": params['num_segments'],
"chorus_strength": 1.2 if params['sections']['chorus'] > 0 else 1.0
}
}
return model_path, model_config[model_path], params
# GPU ์„ค์ • ์ตœ์ ํ™”
def optimize_gpu_settings():
if torch.cuda.is_available():
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.enabled = True
torch.cuda.empty_cache()
torch.cuda.set_device(0)
logging.info(f"Using GPU: {torch.cuda.get_device_name(0)}")
logging.info(f"Available GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.2f} GB")
else:
logging.warning("GPU not available!")
def install_flash_attn():
try:
if not torch.cuda.is_available():
logging.warning("GPU not available, skipping flash-attn installation")
return False
cuda_version = torch.version.cuda
if cuda_version is None:
logging.warning("CUDA not available, skipping flash-attn installation")
return False
logging.info(f"Detected CUDA version: {cuda_version}")
try:
import flash_attn
logging.info("flash-attn already installed")
return True
except ImportError:
logging.info("Installing flash-attn...")
try:
subprocess.run(
["pip", "install", "flash-attn", "--no-build-isolation"],
check=True,
capture_output=True
)
logging.info("flash-attn installed successfully!")
return True
except subprocess.CalledProcessError:
logging.warning("Failed to install flash-attn via pip, skipping...")
return False
except Exception as e:
logging.warning(f"Failed to install flash-attn: {e}")
return False
def initialize_system():
optimize_gpu_settings()
has_flash_attn = install_flash_attn()
from huggingface_hub import snapshot_download
folder_path = './inference/xcodec_mini_infer'
os.makedirs(folder_path, exist_ok=True)
logging.info(f"Created folder at: {folder_path}")
snapshot_download(
repo_id="m-a-p/xcodec_mini_infer",
local_dir="./inference/xcodec_mini_infer",
resume_download=True
)
try:
os.chdir("./inference")
logging.info(f"Working directory changed to: {os.getcwd()}")
except FileNotFoundError as e:
logging.error(f"Directory error: {e}")
raise
@lru_cache(maxsize=50)
def get_cached_file_path(content_hash, prefix):
return create_temp_file(content_hash, prefix)
def empty_output_folder(output_dir):
try:
shutil.rmtree(output_dir)
os.makedirs(output_dir)
logging.info(f"Output folder cleaned: {output_dir}")
except Exception as e:
logging.error(f"Error cleaning output folder: {e}")
raise
def create_temp_file(content, prefix, suffix=".txt"):
temp_file = tempfile.NamedTemporaryFile(delete=False, mode="w", prefix=prefix, suffix=suffix)
content = content.strip() + "\n\n"
content = content.replace("\r\n", "\n").replace("\r", "\n")
temp_file.write(content)
temp_file.close()
logging.debug(f"Temporary file created: {temp_file.name}")
return temp_file.name
def get_last_mp3_file(output_dir):
mp3_files = [f for f in os.listdir(output_dir) if f.endswith('.mp3')]
if not mp3_files:
logging.warning("No MP3 files found")
return None
mp3_files_with_path = [os.path.join(output_dir, f) for f in mp3_files]
mp3_files_with_path.sort(key=os.path.getmtime, reverse=True)
return mp3_files_with_path[0]
def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens):
try:
# ๋ชจ๋ธ ์„ ํƒ ๋ฐ ์„ค์ •
model_path, config, params = optimize_model_selection(lyrics_txt_content, genre_txt_content)
logging.info(f"Selected model: {model_path}")
logging.info(f"Lyrics analysis: {params}")
# ์ฝ”๋Ÿฌ์Šค ์„น์…˜ ํ™•์ธ
has_chorus = params['sections']['chorus'] > 0
estimated_duration = params.get('estimated_duration', 60) # ๊ธฐ๋ณธ๊ฐ’ 60์ดˆ
logging.info(f"Estimated duration: {estimated_duration} seconds")
logging.info(f"Has chorus sections: {has_chorus}")
# ์‹ค์ œ ์‚ฌ์šฉํ•  ํŒŒ๋ผ๋ฏธํ„ฐ
actual_num_segments = config['num_segments']
actual_max_tokens = config['max_tokens']
logging.info(f"Using segments: {actual_num_segments}, tokens: {actual_max_tokens}")
# ์ž„์‹œ ํŒŒ์ผ ์ƒ์„ฑ
genre_txt_path = create_temp_file(genre_txt_content, prefix="genre_")
lyrics_txt_path = create_temp_file(lyrics_txt_content, prefix="lyrics_")
output_dir = "./output"
os.makedirs(output_dir, exist_ok=True)
empty_output_folder(output_dir)
# ๊ธฐ๋ณธ ๋ช…๋ น์–ด ๊ตฌ์„ฑ
command = [
"python", "infer.py",
"--stage1_model", model_path,
"--stage2_model", "m-a-p/YuE-s2-1B-general",
"--genre_txt", genre_txt_path,
"--lyrics_txt", lyrics_txt_path,
"--run_n_segments", str(actual_num_segments),
"--stage2_batch_size", str(config['batch_size']),
"--output_dir", output_dir,
"--cuda_idx", "0",
"--max_new_tokens", str(actual_max_tokens),
"--keep_intermediate"
]
if has_chorus:
command.extend([
"--segment_duration", str(int(estimated_duration / actual_num_segments)),
"--enhance_chorus"
])
# GPU๊ฐ€ ์žˆ๋Š” ๊ฒฝ์šฐ์—๋งŒ ์ถ”๊ฐ€ ์˜ต์…˜ ์ ์šฉ
if torch.cuda.is_available():
command.append("--disable_offload_model")
# CUDA ํ™˜๊ฒฝ ๋ณ€์ˆ˜ ์„ค์ •
env = os.environ.copy()
if torch.cuda.is_available():
env.update({
"CUDA_VISIBLE_DEVICES": "0",
"CUDA_HOME": "/usr/local/cuda",
"PATH": f"/usr/local/cuda/bin:{env.get('PATH', '')}",
"LD_LIBRARY_PATH": f"/usr/local/cuda/lib64:{env.get('LD_LIBRARY_PATH', '')}",
"PYTORCH_CUDA_ALLOC_CONF": "max_split_size_mb:512"
})
# transformers ์บ์‹œ ๋งˆ์ด๊ทธ๋ ˆ์ด์…˜ ์ฒ˜๋ฆฌ
try:
from transformers.utils import move_cache
move_cache()
except Exception as e:
logging.warning(f"Cache migration warning (non-critical): {e}")
# ๋ช…๋ น ์‹คํ–‰
process = subprocess.run(
command,
env=env,
check=False,
capture_output=True,
text=True
)
# ์‹คํ–‰ ๊ฒฐ๊ณผ ๋กœ๊น…
logging.info(f"Command output: {process.stdout}")
if process.stderr:
logging.error(f"Command error: {process.stderr}")
if process.returncode != 0:
logging.error(f"Command failed with return code: {process.returncode}")
logging.error(f"Command: {' '.join(command)}")
raise RuntimeError(f"Inference failed: {process.stderr}")
# ๊ฒฐ๊ณผ ์ฒ˜๋ฆฌ
last_mp3 = get_last_mp3_file(output_dir)
if last_mp3:
duration = get_audio_duration(last_mp3)
logging.info(f"Generated audio file: {last_mp3}")
if duration:
logging.info(f"Audio duration: {duration:.2f} seconds")
logging.info(f"Expected duration: {estimated_duration} seconds")
return last_mp3
else:
logging.warning("No output audio file generated")
return None
except Exception as e:
logging.error(f"Inference error: {e}")
raise
finally:
# ์ž„์‹œ ํŒŒ์ผ ์ •๋ฆฌ
for file in [genre_txt_path, lyrics_txt_path]:
try:
os.remove(file)
logging.debug(f"Removed temporary file: {file}")
except Exception as e:
logging.warning(f"Failed to remove temporary file {file}: {e}")
def main():
# Gradio ์ธํ„ฐํŽ˜์ด์Šค
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation (Multi-Language Support)")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/multimodal-art-projection/YuE">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://map-yue.github.io">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
</div>
""")
with gr.Row():
with gr.Column():
genre_txt = gr.Textbox(
label="Genre",
placeholder="Enter music genre and style descriptions..."
)
lyrics_txt = gr.Textbox(
label="Lyrics (Supports English, Korean, Japanese, Chinese)",
placeholder="Enter song lyrics with [verse], [chorus], [bridge] tags...",
lines=10
)
with gr.Column():
num_segments = gr.Number(
label="Number of Song Segments (Auto-adjusted based on lyrics)",
value=2,
minimum=1,
maximum=4,
step=1,
interactive=False
)
max_new_tokens = gr.Slider(
label="Max New Tokens (Auto-adjusted based on lyrics)",
minimum=500,
maximum=32000,
step=500,
value=4000,
interactive=False
)
with gr.Row():
duration_info = gr.Label(label="Estimated Duration")
sections_info = gr.Label(label="Section Information")
submit_btn = gr.Button("Generate Music", variant="primary")
music_out = gr.Audio(label="Generated Audio")
# ๋‹ค๊ตญ์–ด ์˜ˆ์ œ
gr.Examples(
examples=[
# ์˜์–ด ์˜ˆ์ œ
[
"female blues airy vocal bright vocal piano sad romantic guitar jazz",
"""[verse]
In the quiet of the evening, shadows start to fall
Whispers of the night wind echo through the hall
Lost within the silence, I hear your gentle voice
Guiding me back homeward, making my heart rejoice
[chorus]
Don't let this moment fade, hold me close tonight
With you here beside me, everything's alright
Can't imagine life alone, don't want to let you go
Stay with me forever, let our love just flow
"""
],
# ํ•œ๊ตญ์–ด ์˜ˆ์ œ
[
"K-pop bright energetic synth dance electronic",
"""[verse]
๋น›๋‚˜๋Š” ๋ณ„๋“ค์ฒ˜๋Ÿผ ์šฐ๋ฆฌ์˜ ๊ฟˆ์ด
์ € ํ•˜๋Š˜์„ ์ˆ˜๋†“์•„ ๋ฐ˜์ง์ด๋„ค
ํ•จ๊ป˜๋ผ๋ฉด ์–ด๋””๋“  ๊ฐˆ ์ˆ˜ ์žˆ์–ด
์šฐ๋ฆฌ์˜ ์ด์•ผ๊ธฐ๊ฐ€ ์‹œ์ž‘๋˜๋„ค
[chorus]
๋‹ฌ๋ ค๊ฐ€์ž ๋” ๋†’์ด ๋” ๋ฉ€๋ฆฌ
๋‘๋ ค์›€์€ ์—†์–ด ๋„ˆ์™€ ํ•จ๊ป˜๋ผ๋ฉด
์˜์›ํžˆ ๊ณ„์†๋  ์šฐ๋ฆฌ์˜ ๋…ธ๋ž˜
์ด ์ˆœ๊ฐ„์„ ๊ธฐ์–ตํ•ด forever
"""
]
],
inputs=[genre_txt, lyrics_txt]
)
# ์‹œ์Šคํ…œ ์ดˆ๊ธฐํ™”
initialize_system()
def update_info(lyrics):
if not lyrics:
return "No lyrics entered", "No sections detected"
params = calculate_generation_params(lyrics)
duration = params.get('estimated_duration', 0)
sections = params['sections']
return (
f"{duration:.1f} seconds",
f"Verses: {sections['verse']}, Chorus: {sections['chorus']}, Bridge: {sections['bridge']}"
)
# ์ด๋ฒคํŠธ ํ•ธ๋“ค๋Ÿฌ
lyrics_txt.change(
fn=update_info,
inputs=[lyrics_txt],
outputs=[duration_info, sections_info]
)
submit_btn.click(
fn=infer,
inputs=[genre_txt, lyrics_txt, num_segments, max_new_tokens],
outputs=[music_out]
)
return demo
if __name__ == "__main__":
demo = main()
demo.queue(max_size=20).launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_api=True,
show_error=True,
max_threads=2
)