|
import gradio as gr |
|
import subprocess |
|
import os |
|
import shutil |
|
import tempfile |
|
import torch |
|
import logging |
|
import numpy as np |
|
import re |
|
from concurrent.futures import ThreadPoolExecutor |
|
from functools import lru_cache |
|
|
|
|
|
logging.basicConfig( |
|
level=logging.INFO, |
|
format='%(asctime)s - %(levelname)s - %(message)s', |
|
handlers=[ |
|
logging.FileHandler('yue_generation.log'), |
|
logging.StreamHandler() |
|
] |
|
) |
|
|
|
|
|
def analyze_lyrics(lyrics): |
|
|
|
lines = [line.strip() for line in lyrics.split('\n') if line.strip()] |
|
|
|
|
|
sections = { |
|
'verse': 0, |
|
'chorus': 0, |
|
'bridge': 0, |
|
'total_lines': len(lines) |
|
} |
|
|
|
current_section = None |
|
section_lines = { |
|
'verse': 0, |
|
'chorus': 0, |
|
'bridge': 0 |
|
} |
|
|
|
for line in lines: |
|
lower_line = line.lower() |
|
if '[verse]' in lower_line: |
|
current_section = 'verse' |
|
sections['verse'] += 1 |
|
elif '[chorus]' in lower_line: |
|
current_section = 'chorus' |
|
sections['chorus'] += 1 |
|
elif '[bridge]' in lower_line: |
|
current_section = 'bridge' |
|
sections['bridge'] += 1 |
|
elif current_section and line.strip(): |
|
section_lines[current_section] += 1 |
|
|
|
|
|
total_sections = sections['verse'] + sections['chorus'] + sections['bridge'] |
|
|
|
return sections, total_sections, len(lines), section_lines |
|
|
|
def calculate_generation_params(lyrics): |
|
sections, total_sections, total_lines, section_lines = analyze_lyrics(lyrics) |
|
|
|
|
|
base_tokens_per_line = 200 |
|
verse_tokens = section_lines['verse'] * base_tokens_per_line |
|
chorus_tokens = section_lines['chorus'] * (base_tokens_per_line * 1.5) |
|
bridge_tokens = section_lines['bridge'] * base_tokens_per_line |
|
|
|
|
|
total_tokens = int(verse_tokens + chorus_tokens + bridge_tokens) |
|
|
|
|
|
num_segments = max(2, min(4, total_sections)) |
|
|
|
|
|
max_tokens = min(32000, max(3000, total_tokens)) |
|
|
|
return { |
|
'max_tokens': max_tokens, |
|
'num_segments': num_segments, |
|
'sections': sections, |
|
'section_lines': section_lines |
|
} |
|
|
|
|
|
def detect_and_select_model(text): |
|
if re.search(r'[\u3131-\u318E\uAC00-\uD7A3]', text): |
|
return "m-a-p/YuE-s1-7B-anneal-jp-kr-cot" |
|
elif re.search(r'[\u4e00-\u9fff]', text): |
|
return "m-a-p/YuE-s1-7B-anneal-zh-cot" |
|
elif re.search(r'[\u3040-\u309F\u30A0-\u30FF]', text): |
|
return "m-a-p/YuE-s1-7B-anneal-jp-kr-cot" |
|
else: |
|
return "m-a-p/YuE-s1-7B-anneal-en-cot" |
|
|
|
def optimize_model_selection(lyrics, genre): |
|
model_path = detect_and_select_model(lyrics) |
|
params = calculate_generation_params(lyrics) |
|
|
|
model_config = { |
|
"m-a-p/YuE-s1-7B-anneal-en-cot": { |
|
"max_tokens": params['max_tokens'], |
|
"temperature": 0.8, |
|
"batch_size": 8, |
|
"num_segments": params['num_segments'], |
|
"chorus_strength": 1.2 if params['sections']['chorus'] > 0 else 1.0 |
|
}, |
|
"m-a-p/YuE-s1-7B-anneal-jp-kr-cot": { |
|
"max_tokens": params['max_tokens'], |
|
"temperature": 0.7, |
|
"batch_size": 8, |
|
"num_segments": params['num_segments'], |
|
"chorus_strength": 1.2 if params['sections']['chorus'] > 0 else 1.0 |
|
}, |
|
"m-a-p/YuE-s1-7B-anneal-zh-cot": { |
|
"max_tokens": params['max_tokens'], |
|
"temperature": 0.7, |
|
"batch_size": 8, |
|
"num_segments": params['num_segments'], |
|
"chorus_strength": 1.2 if params['sections']['chorus'] > 0 else 1.0 |
|
} |
|
} |
|
|
|
return model_path, model_config[model_path], params |
|
|
|
|
|
def optimize_gpu_settings(): |
|
if torch.cuda.is_available(): |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.benchmark = True |
|
torch.backends.cudnn.deterministic = False |
|
torch.backends.cudnn.enabled = True |
|
|
|
torch.cuda.empty_cache() |
|
torch.cuda.set_device(0) |
|
|
|
logging.info(f"Using GPU: {torch.cuda.get_device_name(0)}") |
|
logging.info(f"Available GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.2f} GB") |
|
else: |
|
logging.warning("GPU not available!") |
|
|
|
def install_flash_attn(): |
|
try: |
|
logging.info("Installing flash-attn...") |
|
subprocess.run( |
|
["pip", "install", "flash-attn", "--no-build-isolation"], |
|
check=True, |
|
capture_output=True |
|
) |
|
logging.info("flash-attn installed successfully!") |
|
except subprocess.CalledProcessError as e: |
|
logging.error(f"Failed to install flash-attn: {e}") |
|
raise |
|
|
|
def initialize_system(): |
|
optimize_gpu_settings() |
|
install_flash_attn() |
|
|
|
from huggingface_hub import snapshot_download |
|
|
|
folder_path = './inference/xcodec_mini_infer' |
|
os.makedirs(folder_path, exist_ok=True) |
|
logging.info(f"Created folder at: {folder_path}") |
|
|
|
snapshot_download( |
|
repo_id="m-a-p/xcodec_mini_infer", |
|
local_dir="./inference/xcodec_mini_infer", |
|
resume_download=True |
|
) |
|
|
|
try: |
|
os.chdir("./inference") |
|
logging.info(f"Working directory changed to: {os.getcwd()}") |
|
except FileNotFoundError as e: |
|
logging.error(f"Directory error: {e}") |
|
raise |
|
|
|
@lru_cache(maxsize=100) |
|
def get_cached_file_path(content_hash, prefix): |
|
return create_temp_file(content_hash, prefix) |
|
|
|
def empty_output_folder(output_dir): |
|
try: |
|
shutil.rmtree(output_dir) |
|
os.makedirs(output_dir) |
|
logging.info(f"Output folder cleaned: {output_dir}") |
|
except Exception as e: |
|
logging.error(f"Error cleaning output folder: {e}") |
|
raise |
|
|
|
def create_temp_file(content, prefix, suffix=".txt"): |
|
temp_file = tempfile.NamedTemporaryFile(delete=False, mode="w", prefix=prefix, suffix=suffix) |
|
content = content.strip() + "\n\n" |
|
content = content.replace("\r\n", "\n").replace("\r", "\n") |
|
temp_file.write(content) |
|
temp_file.close() |
|
logging.debug(f"Temporary file created: {temp_file.name}") |
|
return temp_file.name |
|
|
|
def get_last_mp3_file(output_dir): |
|
mp3_files = [f for f in os.listdir(output_dir) if f.endswith('.mp3')] |
|
if not mp3_files: |
|
logging.warning("No MP3 files found") |
|
return None |
|
|
|
mp3_files_with_path = [os.path.join(output_dir, f) for f in mp3_files] |
|
mp3_files_with_path.sort(key=os.path.getmtime, reverse=True) |
|
return mp3_files_with_path[0] |
|
|
|
|
|
|
|
|
|
|
|
def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens): |
|
try: |
|
|
|
model_path, config, params = optimize_model_selection(lyrics_txt_content, genre_txt_content) |
|
logging.info(f"Selected model: {model_path}") |
|
logging.info(f"Lyrics analysis: {params}") |
|
|
|
|
|
actual_num_segments = config['num_segments'] |
|
actual_max_tokens = config['max_tokens'] |
|
|
|
logging.info(f"Using segments: {actual_num_segments}, tokens: {actual_max_tokens}") |
|
|
|
|
|
genre_txt_path = create_temp_file(genre_txt_content, prefix="genre_") |
|
lyrics_txt_path = create_temp_file(lyrics_txt_content, prefix="lyrics_") |
|
|
|
output_dir = "./output" |
|
os.makedirs(output_dir, exist_ok=True) |
|
empty_output_folder(output_dir) |
|
|
|
|
|
command = [ |
|
"python", "infer.py", |
|
"--stage1_model", model_path, |
|
"--stage2_model", "m-a-p/YuE-s2-1B-general", |
|
"--genre_txt", genre_txt_path, |
|
"--lyrics_txt", lyrics_txt_path, |
|
"--run_n_segments", str(actual_num_segments), |
|
"--stage2_batch_size", str(config['batch_size']), |
|
"--output_dir", output_dir, |
|
"--cuda_idx", "0", |
|
"--max_new_tokens", str(actual_max_tokens), |
|
"--temperature", str(config['temperature']), |
|
"--disable_offload_model", |
|
"--use_flash_attention_2", |
|
"--bf16", |
|
"--chorus_strength", str(config['chorus_strength']) |
|
] |
|
|
|
|
|
env = os.environ.copy() |
|
env.update({ |
|
"CUDA_VISIBLE_DEVICES": "0", |
|
"CUDA_HOME": "/usr/local/cuda", |
|
"PATH": f"/usr/local/cuda/bin:{env.get('PATH', '')}", |
|
"LD_LIBRARY_PATH": f"/usr/local/cuda/lib64:{env.get('LD_LIBRARY_PATH', '')}", |
|
"PYTORCH_CUDA_ALLOC_CONF": "max_split_size_mb:512" |
|
}) |
|
|
|
|
|
process = subprocess.run(command, env=env, check=True, capture_output=True) |
|
logging.info("Inference completed successfully") |
|
|
|
|
|
last_mp3 = get_last_mp3_file(output_dir) |
|
if last_mp3: |
|
logging.info(f"Generated audio file: {last_mp3}") |
|
return last_mp3 |
|
else: |
|
logging.warning("No output audio file generated") |
|
return None |
|
|
|
except Exception as e: |
|
logging.error(f"Inference error: {e}") |
|
raise |
|
finally: |
|
|
|
for file in [genre_txt_path, lyrics_txt_path]: |
|
try: |
|
os.remove(file) |
|
logging.debug(f"Removed temporary file: {file}") |
|
except Exception as e: |
|
logging.warning(f"Failed to remove temporary file {file}: {e}") |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Column(): |
|
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation (Multi-Language Support)") |
|
gr.HTML(""" |
|
<div style="display:flex;column-gap:4px;"> |
|
<a href="https://github.com/multimodal-art-projection/YuE"> |
|
<img src='https://img.shields.io/badge/GitHub-Repo-blue'> |
|
</a> |
|
<a href="https://map-yue.github.io"> |
|
<img src='https://img.shields.io/badge/Project-Page-green'> |
|
</a> |
|
</div> |
|
""") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
genre_txt = gr.Textbox( |
|
label="Genre", |
|
placeholder="Enter music genre and style descriptions..." |
|
) |
|
lyrics_txt = gr.Textbox( |
|
label="Lyrics (Supports English, Korean, Japanese, Chinese)", |
|
placeholder="Enter song lyrics with [verse], [chorus], [bridge] tags...", |
|
lines=10 |
|
) |
|
|
|
with gr.Column(): |
|
num_segments = gr.Number( |
|
label="Number of Song Segments (Auto-adjusted based on lyrics)", |
|
value=2, |
|
minimum=1, |
|
maximum=4, |
|
step=1, |
|
interactive=False |
|
) |
|
max_new_tokens = gr.Slider( |
|
label="Max New Tokens (Auto-adjusted based on lyrics)", |
|
minimum=500, |
|
maximum=32000, |
|
step=500, |
|
value=4000, |
|
interactive=False |
|
) |
|
submit_btn = gr.Button("Generate Music", variant="primary") |
|
music_out = gr.Audio(label="Generated Audio") |
|
|
|
|
|
gr.Examples( |
|
examples=[ |
|
|
|
[ |
|
"female blues airy vocal bright vocal piano sad romantic guitar jazz", |
|
"""[verse] |
|
In the quiet of the evening, shadows start to fall |
|
Whispers of the night wind echo through the hall |
|
Lost within the silence, I hear your gentle voice |
|
Guiding me back homeward, making my heart rejoice |
|
|
|
[chorus] |
|
Don't let this moment fade, hold me close tonight |
|
With you here beside me, everything's alright |
|
Can't imagine life alone, don't want to let you go |
|
Stay with me forever, let our love just flow |
|
|
|
[verse] |
|
Morning light is breaking, through the window pane |
|
Memories of yesterday, like soft summer rain |
|
In your arms I'm finding, all I'm dreaming of |
|
Every day beside you, fills my heart with love |
|
|
|
[chorus] |
|
Don't let this moment fade, hold me close tonight |
|
With you here beside me, everything's alright |
|
Can't imagine life alone, don't want to let you go |
|
Stay with me forever, let our love just flow |
|
""" |
|
], |
|
|
|
[ |
|
"K-pop bright energetic synth dance electronic", |
|
"""[verse] |
|
λΉλλ λ³λ€μ²λΌ μ°λ¦¬μ κΏμ΄ |
|
μ νλμ μλμ λ°μ§μ΄λ€ |
|
ν¨κ»λΌλ©΄ μ΄λλ κ° μ μμ΄ |
|
μ°λ¦¬μ μ΄μΌκΈ°κ° μμλλ€ |
|
|
|
[chorus] |
|
λ¬λ €κ°μ λ λμ΄ λ λ©λ¦¬ |
|
λλ €μμ μμ΄ λμ ν¨κ»λΌλ©΄ |
|
μμν κ³μλ μ°λ¦¬μ λ
Έλ |
|
μ΄ μκ°μ κΈ°μ΅ν΄ forever |
|
|
|
[verse] |
|
μλ‘μ΄ λ΄μΌμ ν₯ν΄ λμκ° |
|
μ°λ¦¬λ§μ κΈΈμ λ§λ€μ΄κ° |
|
λ―ΏμμΌλ‘ κ°λν μ°λ¦¬μ λ§ |
|
μ λ λ©μΆμ§ μμ κ³μν΄μ |
|
|
|
[chorus] |
|
λ¬λ €κ°μ λ λμ΄ λ λ©λ¦¬ |
|
λλ €μμ μμ΄ λμ ν¨κ»λΌλ©΄ |
|
μμν κ³μλ μ°λ¦¬μ λ
Έλ |
|
μ΄ μκ°μ κΈ°μ΅ν΄ forever |
|
""" |
|
] |
|
], |
|
inputs=[genre_txt, lyrics_txt] |
|
) |
|
|
|
|
|
initialize_system() |
|
|
|
|
|
submit_btn.click( |
|
fn=infer, |
|
inputs=[genre_txt, lyrics_txt, num_segments, max_new_tokens], |
|
outputs=[music_out] |
|
) |
|
|
|
|
|
demo.queue(concurrency_count=2).launch( |
|
server_name="0.0.0.0", |
|
server_port=7860, |
|
share=True, |
|
enable_queue=True, |
|
show_api=True, |
|
show_error=True |
|
) |