Spaces:
Runtime error
Runtime error
| """Compute depth maps for images in the input folder. | |
| """ | |
| import os | |
| import glob | |
| import torch | |
| import utils | |
| import cv2 | |
| import argparse | |
| from torchvision.transforms import Compose | |
| from midas.dpt_depth import DPTDepthModel | |
| from midas.midas_net import MidasNet | |
| from midas.midas_net_custom import MidasNet_small | |
| from midas.transforms import Resize, NormalizeImage, PrepareForNet | |
| def run(input_path, output_path, model_path, model_type="large", optimize=True): | |
| """Run MonoDepthNN to compute depth maps. | |
| Args: | |
| input_path (str): path to input folder | |
| output_path (str): path to output folder | |
| model_path (str): path to saved model | |
| """ | |
| print("initialize") | |
| # select device | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| print("device: %s" % device) | |
| # load network | |
| if model_type == "dpt_large": # DPT-Large | |
| model = DPTDepthModel( | |
| path=model_path, | |
| backbone="vitl16_384", | |
| non_negative=True, | |
| ) | |
| net_w, net_h = 384, 384 | |
| resize_mode = "minimal" | |
| normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) | |
| elif model_type == "dpt_hybrid": #DPT-Hybrid | |
| model = DPTDepthModel( | |
| path=model_path, | |
| backbone="vitb_rn50_384", | |
| non_negative=True, | |
| ) | |
| net_w, net_h = 384, 384 | |
| resize_mode="minimal" | |
| normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) | |
| elif model_type == "midas_v21": | |
| model = MidasNet(model_path, non_negative=True) | |
| net_w, net_h = 384, 384 | |
| resize_mode="upper_bound" | |
| normalization = NormalizeImage( | |
| mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] | |
| ) | |
| elif model_type == "midas_v21_small": | |
| model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True, non_negative=True, blocks={'expand': True}) | |
| net_w, net_h = 256, 256 | |
| resize_mode="upper_bound" | |
| normalization = NormalizeImage( | |
| mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] | |
| ) | |
| else: | |
| print(f"model_type '{model_type}' not implemented, use: --model_type large") | |
| assert False | |
| transform = Compose( | |
| [ | |
| Resize( | |
| net_w, | |
| net_h, | |
| resize_target=None, | |
| keep_aspect_ratio=True, | |
| ensure_multiple_of=32, | |
| resize_method=resize_mode, | |
| image_interpolation_method=cv2.INTER_CUBIC, | |
| ), | |
| normalization, | |
| PrepareForNet(), | |
| ] | |
| ) | |
| model.eval() | |
| if optimize==True: | |
| # rand_example = torch.rand(1, 3, net_h, net_w) | |
| # model(rand_example) | |
| # traced_script_module = torch.jit.trace(model, rand_example) | |
| # model = traced_script_module | |
| if device == torch.device("cuda"): | |
| model = model.to(memory_format=torch.channels_last) | |
| model = model.half() | |
| model.to(device) | |
| # get input | |
| img_names = glob.glob(os.path.join(input_path, "*")) | |
| num_images = len(img_names) | |
| # create output folder | |
| os.makedirs(output_path, exist_ok=True) | |
| print("start processing") | |
| for ind, img_name in enumerate(img_names): | |
| print(" processing {} ({}/{})".format(img_name, ind + 1, num_images)) | |
| # input | |
| img = utils.read_image(img_name) | |
| img_input = transform({"image": img})["image"] | |
| # compute | |
| with torch.no_grad(): | |
| sample = torch.from_numpy(img_input).to(device).unsqueeze(0) | |
| if optimize==True and device == torch.device("cuda"): | |
| sample = sample.to(memory_format=torch.channels_last) | |
| sample = sample.half() | |
| prediction = model.forward(sample) | |
| prediction = ( | |
| torch.nn.functional.interpolate( | |
| prediction.unsqueeze(1), | |
| size=img.shape[:2], | |
| mode="bicubic", | |
| align_corners=False, | |
| ) | |
| .squeeze() | |
| .cpu() | |
| .numpy() | |
| ) | |
| # output | |
| filename = os.path.join( | |
| output_path, os.path.splitext(os.path.basename(img_name))[0] | |
| ) | |
| utils.write_depth(filename, prediction, bits=2) | |
| print("finished") | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('-i', '--input_path', | |
| default='input', | |
| help='folder with input images' | |
| ) | |
| parser.add_argument('-o', '--output_path', | |
| default='output', | |
| help='folder for output images' | |
| ) | |
| parser.add_argument('-m', '--model_weights', | |
| default=None, | |
| help='path to the trained weights of model' | |
| ) | |
| parser.add_argument('-t', '--model_type', | |
| default='dpt_large', | |
| help='model type: dpt_large, dpt_hybrid, midas_v21_large or midas_v21_small' | |
| ) | |
| parser.add_argument('--optimize', dest='optimize', action='store_true') | |
| parser.add_argument('--no-optimize', dest='optimize', action='store_false') | |
| parser.set_defaults(optimize=True) | |
| args = parser.parse_args() | |
| default_models = { | |
| "midas_v21_small": "weights/midas_v21_small-70d6b9c8.pt", | |
| "midas_v21": "weights/midas_v21-f6b98070.pt", | |
| "dpt_large": "weights/dpt_large-midas-2f21e586.pt", | |
| "dpt_hybrid": "weights/dpt_hybrid-midas-501f0c75.pt", | |
| } | |
| if args.model_weights is None: | |
| args.model_weights = default_models[args.model_type] | |
| # set torch options | |
| torch.backends.cudnn.enabled = True | |
| torch.backends.cudnn.benchmark = True | |
| # compute depth maps | |
| run(args.input_path, args.output_path, args.model_weights, args.model_type, args.optimize) | |