Spaces:
Runtime error
Runtime error
| # Adapted from https://github.com/guoyww/AnimateDiff | |
| from dataclasses import dataclass | |
| import torch | |
| import torch.nn.functional as F | |
| from diffusers.models.attention import FeedForward | |
| from diffusers.utils import BaseOutput | |
| from diffusers.utils.import_utils import is_xformers_available | |
| from einops import rearrange | |
| from torch import nn | |
| from .attention import CrossAttention | |
| from .positional_encoding import PositionalEncoding | |
| from .resnet import zero_module | |
| from .stream_motion_module import StreamTemporalAttention | |
| def attn_mask_to_bias(attn_mask: torch.Tensor): | |
| """ | |
| Convert bool attention mask to float attention bias tensor. | |
| """ | |
| if attn_mask.dtype in [torch.float, torch.half]: | |
| return attn_mask | |
| elif attn_mask.dtype == torch.bool: | |
| attn_bias = torch.zeros_like(attn_mask).float().masked_fill(attn_mask.logical_not(), float("-inf")) | |
| return attn_bias | |
| else: | |
| raise TypeError("Only support float or bool tensor for attn_mask input. " f"But receive {type(attn_mask)}.") | |
| class TemporalTransformer3DModelOutput(BaseOutput): | |
| sample: torch.FloatTensor | |
| if is_xformers_available(): | |
| import xformers | |
| import xformers.ops | |
| else: | |
| xformers = None | |
| def get_motion_module( | |
| in_channels, | |
| motion_module_type: str, | |
| motion_module_kwargs: dict, | |
| ): | |
| if motion_module_type == "Vanilla": | |
| return VanillaTemporalModule( | |
| in_channels=in_channels, | |
| **motion_module_kwargs, | |
| ) | |
| elif motion_module_type == "Streaming": | |
| return VanillaTemporalModule( | |
| in_channels=in_channels, | |
| enable_streaming=True, | |
| **motion_module_kwargs, | |
| ) | |
| else: | |
| raise ValueError | |
| class VanillaTemporalModule(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels, | |
| num_attention_heads=8, | |
| num_transformer_block=2, | |
| attention_block_types=("Temporal_Self", "Temporal_Self"), | |
| cross_frame_attention_mode=None, | |
| temporal_position_encoding=False, | |
| temporal_position_encoding_max_len=32, | |
| temporal_attention_dim_div=1, | |
| # parameters for 3d conv | |
| num_3d_conv_layers=0, | |
| kernel_size=3, | |
| down_up_sample=False, | |
| zero_initialize=True, | |
| attention_class_name="versatile", | |
| attention_kwargs={}, | |
| enable_streaming=False, | |
| *args, | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| self.temporal_transformer = TemporalTransformer3DModel( | |
| in_channels=in_channels, | |
| num_attention_heads=num_attention_heads, | |
| attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div, | |
| num_layers=num_transformer_block, | |
| attention_block_types=attention_block_types, | |
| cross_frame_attention_mode=cross_frame_attention_mode, | |
| temporal_position_encoding=temporal_position_encoding, | |
| temporal_position_encoding_max_len=temporal_position_encoding_max_len, | |
| attention_class_name=attention_class_name, | |
| attention_kwargs=attention_kwargs, | |
| enable_streaming=enable_streaming, | |
| ) | |
| if zero_initialize: | |
| self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out) | |
| self.enable_streaming = enable_streaming | |
| def forward(self, *args, **kwargs): | |
| fwd_fn = self.forward_streaming if self.enable_streaming else self.forward_orig | |
| return fwd_fn(*args, **kwargs) | |
| def forward_orig( | |
| self, | |
| input_tensor, | |
| temb, | |
| encoder_hidden_states, | |
| attention_mask=None, | |
| temporal_attention_mask=None, | |
| kv_cache=None, | |
| ): | |
| hidden_states = input_tensor | |
| hidden_states = self.temporal_transformer( | |
| hidden_states, encoder_hidden_states, attention_mask, temporal_attention_mask, kv_cache=kv_cache | |
| ) | |
| output = hidden_states | |
| return output | |
| def forward_streaming( | |
| self, | |
| input_tensor, | |
| temb, | |
| encoder_hidden_states, | |
| attention_mask=None, | |
| temporal_attention_mask=None, | |
| kv_cache=None, | |
| pe_idx=None, | |
| update_idx=None, | |
| ): | |
| hidden_states = input_tensor | |
| hidden_states = self.temporal_transformer( | |
| hidden_states, | |
| encoder_hidden_states, | |
| attention_mask, | |
| temporal_attention_mask, | |
| kv_cache=kv_cache, | |
| pe_idx=pe_idx, | |
| update_idx=update_idx, | |
| ) | |
| output = hidden_states | |
| return output | |
| class TemporalTransformer3DModel(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels, | |
| num_attention_heads, | |
| attention_head_dim, | |
| num_layers, | |
| attention_block_types=( | |
| "Temporal_Self", | |
| "Temporal_Self", | |
| ), | |
| dropout=0.0, | |
| norm_num_groups=32, | |
| cross_attention_dim=1280, | |
| activation_fn="geglu", | |
| attention_bias=False, | |
| upcast_attention=False, | |
| cross_frame_attention_mode=None, | |
| temporal_position_encoding=False, | |
| temporal_position_encoding_max_len=32, | |
| attention_class_name="versatile", | |
| attention_kwargs={}, | |
| enable_streaming=False, | |
| ): | |
| super().__init__() | |
| inner_dim = num_attention_heads * attention_head_dim | |
| self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) | |
| self.proj_in = nn.Linear(in_channels, inner_dim) | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| TemporalTransformerBlock( | |
| dim=inner_dim, | |
| num_attention_heads=num_attention_heads, | |
| attention_head_dim=attention_head_dim, | |
| attention_block_types=attention_block_types, | |
| dropout=dropout, | |
| norm_num_groups=norm_num_groups, | |
| cross_attention_dim=cross_attention_dim, | |
| activation_fn=activation_fn, | |
| attention_bias=attention_bias, | |
| upcast_attention=upcast_attention, | |
| cross_frame_attention_mode=cross_frame_attention_mode, | |
| temporal_position_encoding=temporal_position_encoding, | |
| temporal_position_encoding_max_len=temporal_position_encoding_max_len, | |
| attention_class_name=attention_class_name, | |
| attention_extra_args=attention_kwargs, | |
| enable_streaming=enable_streaming, | |
| ) | |
| for d in range(num_layers) | |
| ] | |
| ) | |
| self.proj_out = nn.Linear(inner_dim, in_channels) | |
| self.enable_streaming = enable_streaming | |
| def forward(self, *args, **kwargs): | |
| fwd_fn = self.forward_streaming if self.enable_streaming else self.forward_orig | |
| return fwd_fn(*args, **kwargs) | |
| def forward_orig( | |
| self, | |
| hidden_states, | |
| encoder_hidden_states=None, | |
| attention_mask=None, | |
| temporal_attention_mask=None, | |
| kv_cache=None, | |
| ): | |
| assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." | |
| video_length = hidden_states.shape[2] | |
| hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") | |
| batch, channel, height, width = hidden_states.shape | |
| residual = hidden_states | |
| hidden_states = self.norm(hidden_states) | |
| inner_dim = hidden_states.shape[1] | |
| hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim) | |
| hidden_states = self.proj_in(hidden_states) | |
| # Transformer Blocks | |
| for block in self.transformer_blocks: | |
| hidden_states = block( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| video_length=video_length, | |
| height=height, | |
| width=width, | |
| temporal_attention_mask=temporal_attention_mask, | |
| kv_cache=kv_cache, | |
| ) | |
| # output | |
| hidden_states = self.proj_out(hidden_states) | |
| hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous() | |
| output = hidden_states + residual | |
| output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) | |
| return output | |
| def forward_streaming( | |
| self, | |
| hidden_states, | |
| encoder_hidden_states=None, | |
| attention_mask=None, | |
| temporal_attention_mask=None, | |
| kv_cache=None, | |
| pe_idx=None, | |
| update_idx=None, | |
| ): | |
| assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." | |
| video_length = hidden_states.shape[2] | |
| hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") | |
| batch, channel, height, width = hidden_states.shape | |
| residual = hidden_states | |
| hidden_states = self.norm(hidden_states) | |
| inner_dim = hidden_states.shape[1] | |
| hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim) | |
| hidden_states = self.proj_in(hidden_states) | |
| # Transformer Blocks | |
| for block in self.transformer_blocks: | |
| hidden_states = block( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| video_length=video_length, | |
| height=height, | |
| width=width, | |
| temporal_attention_mask=temporal_attention_mask, | |
| kv_cache=kv_cache, | |
| pe_idx=pe_idx, | |
| update_idx=update_idx, | |
| ) | |
| # output | |
| hidden_states = self.proj_out(hidden_states) | |
| hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous() | |
| output = hidden_states + residual | |
| output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) | |
| return output | |
| class TemporalTransformerBlock(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| num_attention_heads, | |
| attention_head_dim, | |
| attention_block_types=( | |
| "Temporal_Self", | |
| "Temporal_Self", | |
| ), | |
| dropout=0.0, | |
| norm_num_groups=32, | |
| cross_attention_dim=768, | |
| activation_fn="geglu", | |
| attention_bias=False, | |
| upcast_attention=False, | |
| cross_frame_attention_mode=None, | |
| temporal_position_encoding=False, | |
| temporal_position_encoding_max_len=32, | |
| attention_class_name: str = "versatile", | |
| attention_extra_args={}, | |
| enable_streaming=False, | |
| ): | |
| super().__init__() | |
| attention_blocks = [] | |
| norms = [] | |
| if attention_class_name == "versatile": | |
| attention_cls = VersatileAttention | |
| elif attention_class_name == "stream": | |
| attention_cls = StreamTemporalAttention | |
| assert enable_streaming, "StreamTemporalAttention can only used under streaming mode" | |
| else: | |
| raise ValueError(f"Do not support attention_cls: {attention_class_name}.") | |
| for block_name in attention_block_types: | |
| attention_blocks.append( | |
| attention_cls( | |
| attention_mode=block_name.split("_")[0], | |
| cross_attention_dim=cross_attention_dim if block_name.endswith("_Cross") else None, | |
| query_dim=dim, | |
| heads=num_attention_heads, | |
| dim_head=attention_head_dim, | |
| dropout=dropout, | |
| bias=attention_bias, | |
| upcast_attention=upcast_attention, | |
| cross_frame_attention_mode=cross_frame_attention_mode, | |
| temporal_position_encoding=temporal_position_encoding, | |
| temporal_position_encoding_max_len=temporal_position_encoding_max_len, | |
| **attention_extra_args, | |
| ) | |
| ) | |
| norms.append(nn.LayerNorm(dim)) | |
| self.attention_blocks = nn.ModuleList(attention_blocks) | |
| self.norms = nn.ModuleList(norms) | |
| self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) | |
| self.ff_norm = nn.LayerNorm(dim) | |
| self.enable_streaming = enable_streaming | |
| def forward(self, *args, **kwargs): | |
| fwd_func = self.forward_streaming if self.enable_streaming else self.forward_orig | |
| return fwd_func(*args, **kwargs) | |
| def forward_orig( | |
| self, | |
| hidden_states, | |
| encoder_hidden_states=None, | |
| attention_mask=None, | |
| video_length=None, | |
| height=None, | |
| width=None, | |
| temporal_attention_mask=None, | |
| kv_cache=None, | |
| ): | |
| for attention_block, norm in zip(self.attention_blocks, self.norms): | |
| norm_hidden_states = norm(hidden_states) | |
| kv_cache_ = kv_cache[attention_block.motion_module_idx] | |
| hidden_states = ( | |
| attention_block( | |
| norm_hidden_states, | |
| encoder_hidden_states=encoder_hidden_states if attention_block.is_cross_attention else None, | |
| video_length=video_length, | |
| height=height, | |
| width=width, | |
| temporal_attention_mask=temporal_attention_mask, | |
| kv_cache=kv_cache_, | |
| ) | |
| + hidden_states | |
| ) | |
| hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states | |
| output = hidden_states | |
| return output | |
| def forward_streaming( | |
| self, | |
| hidden_states, | |
| encoder_hidden_states=None, | |
| attention_mask=None, | |
| video_length=None, | |
| height=None, | |
| width=None, | |
| temporal_attention_mask=None, | |
| kv_cache=None, | |
| pe_idx=None, | |
| update_idx=None, | |
| ): | |
| for attention_block, norm in zip(self.attention_blocks, self.norms): | |
| norm_hidden_states = norm(hidden_states) | |
| kv_cache_ = kv_cache[attention_block.motion_module_idx] | |
| hidden_states = ( | |
| attention_block( | |
| norm_hidden_states, | |
| encoder_hidden_states=encoder_hidden_states if attention_block.is_cross_attention else None, | |
| video_length=video_length, | |
| height=height, | |
| width=width, | |
| temporal_attention_mask=temporal_attention_mask, | |
| kv_cache=kv_cache_, | |
| pe_idx=pe_idx, | |
| update_idx=update_idx, | |
| ) | |
| + hidden_states | |
| ) | |
| hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states | |
| output = hidden_states | |
| return output | |
| class VersatileAttention(CrossAttention): | |
| def __init__( | |
| self, | |
| attention_mode=None, | |
| cross_frame_attention_mode=None, | |
| temporal_position_encoding=False, | |
| temporal_position_encoding_max_len=32, | |
| stream_cache_mode=None, | |
| *args, | |
| **kwargs, | |
| ): | |
| super().__init__(*args, **kwargs) | |
| self.stream_cache_mode = stream_cache_mode | |
| self.timestep = None | |
| assert attention_mode in ["Temporal"] | |
| self.attention_mode = self._orig_attention_mode = attention_mode | |
| self.is_cross_attention = kwargs.get("cross_attention_dim", None) is not None | |
| self.pos_encoder = PositionalEncoding( | |
| kwargs["query_dim"], dropout=0.0, max_len=temporal_position_encoding_max_len | |
| ) | |
| def extra_repr(self): | |
| return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}" | |
| def set_index(self, idx): | |
| self.motion_module_idx = idx | |
| def forward( | |
| self, | |
| hidden_states, | |
| encoder_hidden_states=None, | |
| attention_mask=None, | |
| video_length=None, | |
| kv_cache=None, | |
| *args, | |
| **kwargs, | |
| ): | |
| batch_size_frame, sequence_length, _ = hidden_states.shape | |
| d = hidden_states.shape[1] | |
| hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length) | |
| if self.group_norm is not None: | |
| hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
| query = self.to_q(hidden_states) | |
| key = self.to_k(encoder_hidden_states) | |
| value = self.to_v(encoder_hidden_states) | |
| kv_cache[0, :, :video_length, :] = key.clone() | |
| kv_cache[1, :, :video_length, :] = value.clone() | |
| pe = self.pos_encoder.pe[:, :video_length] | |
| pe_q = self.to_q(pe) | |
| pe_k = self.to_k(pe) | |
| pe_v = self.to_v(pe) | |
| query = query + pe_q | |
| key = key + pe_k | |
| value = value + pe_v | |
| query = self.reshape_heads_to_batch_dim(query) | |
| key = self.reshape_heads_to_batch_dim(key) | |
| value = self.reshape_heads_to_batch_dim(value) | |
| if attention_mask is not None: | |
| attention_bias = attn_mask_to_bias(attention_mask) | |
| if attention_bias.shape[-1] != query.shape[1]: | |
| target_length = query.shape[1] | |
| attention_bias = F.pad(attention_mask, (0, target_length), value=float("-inf")) | |
| attention_bias = attention_bias.repeat_interleave(self.heads, dim=0) | |
| attention_bias = attention_bias.to(query) | |
| else: | |
| attention_bias = None | |
| hidden_states = self._memory_efficient_attention_pt20(query, key, value, attention_bias) | |
| hidden_states = hidden_states.to(query.dtype) | |
| # linear proj | |
| hidden_states = self.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = self.to_out[1](hidden_states) | |
| hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) | |
| return hidden_states | |