Spaces:
Runtime error
Runtime error
| #! fork: https://github.com/NVIDIA/TensorRT/blob/main/demo/Diffusion/models.py | |
| # | |
| # SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # | |
| import gc | |
| import onnx | |
| import onnx_graphsurgeon as gs | |
| import torch | |
| from onnx import shape_inference | |
| from polygraphy.backend.onnx.loader import fold_constants | |
| class Optimizer: | |
| def __init__(self, onnx_path, verbose=False): | |
| self.graph = gs.import_onnx(onnx.load(onnx_path)) | |
| self.verbose = verbose | |
| def info(self, prefix): | |
| if self.verbose: | |
| print( | |
| f"{prefix} .. {len(self.graph.nodes)} nodes, {len(self.graph.tensors().keys())} tensors, {len(self.graph.inputs)} inputs, {len(self.graph.outputs)} outputs" | |
| ) | |
| def cleanup(self, return_onnx=False): | |
| self.graph.cleanup().toposort() | |
| if return_onnx: | |
| return gs.export_onnx(self.graph) | |
| def select_outputs(self, keep, names=None): | |
| self.graph.outputs = [self.graph.outputs[o] for o in keep] | |
| if names: | |
| for i, name in enumerate(names): | |
| self.graph.outputs[i].name = name | |
| def fold_constants(self, return_onnx=False): | |
| onnx_graph = fold_constants(gs.export_onnx(self.graph), allow_onnxruntime_shape_inference=True) | |
| self.graph = gs.import_onnx(onnx_graph) | |
| if return_onnx: | |
| return onnx_graph | |
| def infer_shapes(self, return_onnx=False): | |
| onnx_graph = gs.export_onnx(self.graph) | |
| if onnx_graph.ByteSize() > 2147483648: | |
| raise TypeError(f"ERROR: model size exceeds supported 2GB limit, {onnx_graph.ByteSize() / 2147483648}") | |
| else: | |
| onnx_graph = shape_inference.infer_shapes(onnx_graph) | |
| self.graph = gs.import_onnx(onnx_graph) | |
| if return_onnx: | |
| return onnx_graph | |
| def infer_shapes_with_external(self, save_path, return_onnx=False): | |
| # https://github.com/onnx/onnx/blob/main/docs/PythonAPIOverview.md#running-shape-inference-on-an-onnx-model | |
| onnx_graph = gs.export_onnx(self.graph) | |
| onnx.save_model( | |
| onnx_graph, | |
| save_path, | |
| save_as_external_data=True, | |
| all_tensors_to_one_file=False, | |
| size_threshold=1024, | |
| ) | |
| shape_inference.infer_shapes_path(save_path, save_path) | |
| self.graph = gs.import_onnx(onnx.load(save_path)) | |
| if return_onnx: | |
| return onnx.load(save_path) | |
| class BaseModel: | |
| def __init__( | |
| self, | |
| fp16=False, | |
| device="cuda", | |
| verbose=True, | |
| max_batch_size=16, | |
| min_batch_size=1, | |
| embedding_dim=768, | |
| text_maxlen=77, | |
| ): | |
| self.name = "SD Model" | |
| self.fp16 = fp16 | |
| self.device = device | |
| self.verbose = verbose | |
| self.min_batch = min_batch_size | |
| self.max_batch = max_batch_size | |
| self.min_image_shape = 256 # min image resolution: 256x256 | |
| self.max_image_shape = 1024 # max image resolution: 1024x1024 | |
| self.min_latent_shape = self.min_image_shape // 8 | |
| self.max_latent_shape = self.max_image_shape // 8 | |
| self.embedding_dim = embedding_dim | |
| self.text_maxlen = text_maxlen | |
| def get_model(self): | |
| pass | |
| def get_input_names(self): | |
| pass | |
| def get_output_names(self): | |
| pass | |
| def get_dynamic_axes(self): | |
| return None | |
| def get_sample_input(self, batch_size, image_height, image_width): | |
| pass | |
| def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape): | |
| return None | |
| def get_shape_dict(self, batch_size, image_height, image_width): | |
| return None | |
| def optimize(self, onnx_path, onnx_opt_path): | |
| opt = Optimizer(onnx_path, verbose=self.verbose) | |
| opt.info(self.name + ": original") | |
| opt.cleanup() | |
| opt.info(self.name + ": cleanup") | |
| opt.fold_constants() | |
| opt.info(self.name + ": fold constants") | |
| opt.infer_shapes() | |
| opt.info(self.name + ": shape inference") | |
| onnx_opt_graph = opt.cleanup(return_onnx=True) | |
| opt.info(self.name + ": finished") | |
| onnx.save(onnx_opt_graph, onnx_opt_path) | |
| opt.info(self.name + f": saved to {onnx_opt_path}") | |
| del onnx_opt_graph | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def check_dims(self, batch_size, image_height, image_width): | |
| assert batch_size >= self.min_batch and batch_size <= self.max_batch | |
| assert image_height % 8 == 0 or image_width % 8 == 0 | |
| latent_height = image_height // 8 | |
| latent_width = image_width // 8 | |
| assert latent_height >= self.min_latent_shape and latent_height <= self.max_latent_shape | |
| assert latent_width >= self.min_latent_shape and latent_width <= self.max_latent_shape | |
| return (latent_height, latent_width) | |
| def get_minmax_dims(self, batch_size, image_height, image_width, static_batch, static_shape): | |
| min_batch = batch_size if static_batch else self.min_batch | |
| max_batch = batch_size if static_batch else self.max_batch | |
| latent_height = image_height // 8 | |
| latent_width = image_width // 8 | |
| min_image_height = image_height if static_shape else self.min_image_shape | |
| max_image_height = image_height if static_shape else self.max_image_shape | |
| min_image_width = image_width if static_shape else self.min_image_shape | |
| max_image_width = image_width if static_shape else self.max_image_shape | |
| min_latent_height = latent_height if static_shape else self.min_latent_shape | |
| max_latent_height = latent_height if static_shape else self.max_latent_shape | |
| min_latent_width = latent_width if static_shape else self.min_latent_shape | |
| max_latent_width = latent_width if static_shape else self.max_latent_shape | |
| return ( | |
| min_batch, | |
| max_batch, | |
| min_image_height, | |
| max_image_height, | |
| min_image_width, | |
| max_image_width, | |
| min_latent_height, | |
| max_latent_height, | |
| min_latent_width, | |
| max_latent_width, | |
| ) | |
| class CLIP(BaseModel): | |
| def __init__(self, device, max_batch_size, embedding_dim, min_batch_size=1): | |
| super(CLIP, self).__init__( | |
| device=device, | |
| max_batch_size=max_batch_size, | |
| min_batch_size=min_batch_size, | |
| embedding_dim=embedding_dim, | |
| ) | |
| self.name = "CLIP" | |
| def get_input_names(self): | |
| return ["input_ids"] | |
| def get_output_names(self): | |
| return ["text_embeddings", "pooler_output"] | |
| def get_dynamic_axes(self): | |
| return {"input_ids": {0: "B"}, "text_embeddings": {0: "B"}} | |
| def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape): | |
| self.check_dims(batch_size, image_height, image_width) | |
| min_batch, max_batch, _, _, _, _, _, _, _, _ = self.get_minmax_dims( | |
| batch_size, image_height, image_width, static_batch, static_shape | |
| ) | |
| return { | |
| "input_ids": [ | |
| (min_batch, self.text_maxlen), | |
| (batch_size, self.text_maxlen), | |
| (max_batch, self.text_maxlen), | |
| ] | |
| } | |
| def get_shape_dict(self, batch_size, image_height, image_width): | |
| self.check_dims(batch_size, image_height, image_width) | |
| return { | |
| "input_ids": (batch_size, self.text_maxlen), | |
| "text_embeddings": (batch_size, self.text_maxlen, self.embedding_dim), | |
| } | |
| def get_sample_input(self, batch_size, image_height, image_width): | |
| self.check_dims(batch_size, image_height, image_width) | |
| return torch.zeros(batch_size, self.text_maxlen, dtype=torch.int32, device=self.device) | |
| def optimize(self, onnx_path, onnx_opt_path): | |
| opt = Optimizer(onnx_path) | |
| opt.info(self.name + ": original") | |
| opt.select_outputs([0]) # delete graph output#1 | |
| opt.cleanup() | |
| opt.info(self.name + ": remove output[1]") | |
| opt.fold_constants() | |
| opt.info(self.name + ": fold constants") | |
| opt.infer_shapes() | |
| opt.info(self.name + ": shape inference") | |
| opt.select_outputs([0], names=["text_embeddings"]) # rename network output | |
| opt.info(self.name + ": remove output[0]") | |
| onnx_opt_graph = opt.cleanup(return_onnx=True) | |
| opt.info(self.name + ": finished") | |
| onnx.save(onnx_opt_graph, onnx_opt_path) | |
| opt.info(self.name + f": saved to {onnx_opt_path}") | |
| del onnx_opt_graph | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| class InflatedUNetDepth(BaseModel): | |
| def __init__( | |
| self, | |
| fp16=False, | |
| device="cuda", | |
| max_batch_size=16, | |
| min_batch_size=1, | |
| embedding_dim=768, | |
| text_maxlen=77, | |
| unet_dim=4, | |
| kv_cache_list=None, | |
| ): | |
| super().__init__( | |
| fp16=fp16, | |
| device=device, | |
| max_batch_size=max_batch_size, | |
| min_batch_size=min_batch_size, | |
| embedding_dim=embedding_dim, | |
| text_maxlen=text_maxlen, | |
| ) | |
| self.kv_cache_list = kv_cache_list | |
| self.unet_dim = unet_dim | |
| self.name = "UNet" | |
| self.streaming_length = 1 | |
| self.window_size = 16 | |
| def get_input_names(self): | |
| input_list = ["sample", "timestep", "encoder_hidden_states", "temporal_attention_mask", "depth_sample"] | |
| input_list += [f"kv_cache_{i}" for i in range(len(self.kv_cache_list))] | |
| input_list += ["pe_idx", "update_idx"] | |
| return input_list | |
| def get_output_names(self): | |
| output_list = ["latent"] | |
| output_list += [f"kv_cache_out_{i}" for i in range(len(self.kv_cache_list))] | |
| return output_list | |
| def get_dynamic_axes(self): | |
| # NOTE: disable dynamic axes | |
| return {} | |
| def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape): | |
| latent_height, latent_width = self.check_dims(batch_size, image_height, image_width) | |
| ( | |
| min_batch, | |
| max_batch, | |
| _, | |
| _, | |
| _, | |
| _, | |
| min_latent_height, | |
| max_latent_height, | |
| min_latent_width, | |
| max_latent_width, | |
| ) = self.get_minmax_dims(batch_size, image_height, image_width, static_batch, static_shape) | |
| input_profile = { | |
| "sample": [ | |
| (min_batch, self.unet_dim, self.streaming_length, min_latent_height, min_latent_width), | |
| (batch_size, self.unet_dim, self.streaming_length, latent_height, latent_width), | |
| (max_batch, self.unet_dim, self.streaming_length, max_latent_height, max_latent_width), | |
| ], | |
| "timestep": [(min_batch,), (batch_size,), (max_batch,)], | |
| "encoder_hidden_states": [ | |
| (min_batch, self.text_maxlen, self.embedding_dim), | |
| (batch_size, self.text_maxlen, self.embedding_dim), | |
| (max_batch, self.text_maxlen, self.embedding_dim), | |
| ], | |
| "temporal_attention_mask": [ | |
| (min_batch, self.window_size), | |
| (batch_size, self.window_size), | |
| (max_batch, self.window_size), | |
| ], | |
| "depth_sample": [ | |
| (min_batch, self.unet_dim, self.streaming_length, min_latent_height, min_latent_width), | |
| (batch_size, self.unet_dim, self.streaming_length, latent_height, latent_width), | |
| (max_batch, self.unet_dim, self.streaming_length, max_latent_height, max_latent_width), | |
| ], | |
| } | |
| for idx, tensor in enumerate(self.kv_cache_list): | |
| input_profile[f"kv_cache_{idx}"] = [tuple(tensor.shape)] * 3 | |
| input_profile["pe_idx"] = [ | |
| (min_batch, self.window_size), | |
| (batch_size, self.window_size), | |
| (max_batch, self.window_size), | |
| ] | |
| input_profile["update_idx"] = [ | |
| (min_batch,), | |
| (batch_size,), | |
| (max_batch,), | |
| ] | |
| return input_profile | |
| def get_sample_input(self, batch_size, image_height, image_width): | |
| latent_height, latent_width = self.check_dims(batch_size, image_height, image_width) | |
| dtype = torch.float16 if self.fp16 else torch.float32 | |
| attn_mask = torch.zeros((batch_size, self.window_size), dtype=torch.bool, device=self.device) | |
| attn_mask[:, :8] = True | |
| attn_mask[0, -1] = True | |
| attn_bias = torch.zeros_like(attn_mask, dtype=dtype, device=self.device) | |
| attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf")) | |
| pe_idx = torch.arange(self.window_size).unsqueeze(0).repeat(batch_size, 1).cuda() | |
| update_idx = torch.ones(batch_size, dtype=torch.int64).cuda() * 8 | |
| update_idx[1] = 8 + 1 | |
| return ( | |
| torch.randn( | |
| batch_size, | |
| self.unet_dim, | |
| self.streaming_length, | |
| latent_height, | |
| latent_width, | |
| dtype=dtype, | |
| device=self.device, | |
| ), | |
| torch.ones((batch_size,), dtype=dtype, device=self.device), | |
| torch.randn(batch_size, self.text_maxlen, self.embedding_dim, dtype=dtype, device=self.device), | |
| attn_bias, | |
| torch.randn( | |
| batch_size, | |
| self.unet_dim, | |
| self.streaming_length, | |
| latent_height, | |
| latent_width, | |
| dtype=dtype, | |
| device=self.device, | |
| ), | |
| self.kv_cache_list, | |
| pe_idx, | |
| update_idx, | |
| ) | |
| def optimize(self, onnx_path, onnx_opt_path): | |
| """Onnx graph optimization function for model with external data.""" | |
| opt = Optimizer(onnx_path, verbose=self.verbose) | |
| opt.info(self.name + ": original") | |
| opt.cleanup() | |
| opt.info(self.name + ": cleanup") | |
| opt.fold_constants() | |
| opt.info(self.name + ": fold constants") | |
| opt.infer_shapes_with_external(onnx_opt_path) | |
| opt.info(self.name + ": shape inference") | |
| onnx_opt_graph = opt.cleanup(return_onnx=True) | |
| opt.info(self.name + ": finished") | |
| onnx.save( | |
| onnx_opt_graph, | |
| onnx_opt_path, | |
| save_as_external_data=True, | |
| all_tensors_to_one_file=False, | |
| size_threshold=1024, | |
| ) | |
| opt.info(self.name + f": saved to {onnx_opt_path}") | |
| del onnx_opt_graph | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| class Midas(BaseModel): | |
| def __init__( | |
| self, | |
| fp16=False, | |
| device="cuda", | |
| max_batch_size=16, | |
| min_batch_size=1, | |
| embedding_dim=768, | |
| text_maxlen=77, | |
| ): | |
| super().__init__( | |
| fp16=fp16, | |
| device=device, | |
| max_batch_size=max_batch_size, | |
| min_batch_size=min_batch_size, | |
| embedding_dim=embedding_dim, | |
| text_maxlen=text_maxlen, | |
| ) | |
| self.img_dim = 3 | |
| self.name = "midas" | |
| def get_input_names(self): | |
| return ["images"] | |
| def get_output_names(self): | |
| return ["depth_map"] | |
| def get_dynamic_axes(self): | |
| return { | |
| "images": {0: "F"}, | |
| "depth_map": {0: "F"}, | |
| } | |
| def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape): | |
| latent_height, latent_width = self.check_dims(batch_size, image_height, image_width) | |
| ( | |
| min_batch, | |
| max_batch, | |
| _, | |
| _, | |
| _, | |
| _, | |
| min_latent_height, | |
| max_latent_height, | |
| min_latent_width, | |
| max_latent_width, | |
| ) = self.get_minmax_dims(batch_size, image_height, image_width, static_batch, static_shape) | |
| return { | |
| "images": [ | |
| (min_batch, self.img_dim, image_height, image_width), | |
| (batch_size, self.img_dim, image_height, image_width), | |
| (max_batch, self.img_dim, image_height, image_width), | |
| ], | |
| } | |
| def get_sample_input(self, batch_size, image_height, image_width): | |
| dtype = torch.float16 if self.fp16 else torch.float32 | |
| return torch.randn(batch_size, self.img_dim, image_height, image_width, dtype=dtype, device=self.device) | |
| class VAE(BaseModel): | |
| def __init__(self, device, max_batch_size, min_batch_size=1): | |
| super(VAE, self).__init__( | |
| device=device, | |
| max_batch_size=max_batch_size, | |
| min_batch_size=min_batch_size, | |
| embedding_dim=None, | |
| ) | |
| self.name = "VAE decoder" | |
| def get_input_names(self): | |
| return ["latent"] | |
| def get_output_names(self): | |
| return ["images"] | |
| def get_dynamic_axes(self): | |
| return { | |
| "latent": {0: "B", 2: "H", 3: "W"}, | |
| "images": {0: "B", 2: "8H", 3: "8W"}, | |
| } | |
| def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape): | |
| latent_height, latent_width = self.check_dims(batch_size, image_height, image_width) | |
| ( | |
| min_batch, | |
| max_batch, | |
| _, | |
| _, | |
| _, | |
| _, | |
| min_latent_height, | |
| max_latent_height, | |
| min_latent_width, | |
| max_latent_width, | |
| ) = self.get_minmax_dims(batch_size, image_height, image_width, static_batch, static_shape) | |
| return { | |
| "latent": [ | |
| (min_batch, 4, min_latent_height, min_latent_width), | |
| (batch_size, 4, latent_height, latent_width), | |
| (max_batch, 4, max_latent_height, max_latent_width), | |
| ] | |
| } | |
| def get_shape_dict(self, batch_size, image_height, image_width): | |
| latent_height, latent_width = self.check_dims(batch_size, image_height, image_width) | |
| return { | |
| "latent": (batch_size, 4, latent_height, latent_width), | |
| "images": (batch_size, 3, image_height, image_width), | |
| } | |
| def get_sample_input(self, batch_size, image_height, image_width): | |
| latent_height, latent_width = self.check_dims(batch_size, image_height, image_width) | |
| return torch.randn( | |
| batch_size, | |
| 4, | |
| latent_height, | |
| latent_width, | |
| dtype=torch.float32, | |
| device=self.device, | |
| ) | |
| class VAEEncoder(BaseModel): | |
| def __init__(self, device, max_batch_size, min_batch_size=1): | |
| super(VAEEncoder, self).__init__( | |
| device=device, | |
| max_batch_size=max_batch_size, | |
| min_batch_size=min_batch_size, | |
| embedding_dim=None, | |
| ) | |
| self.name = "VAE encoder" | |
| def get_input_names(self): | |
| return ["images"] | |
| def get_output_names(self): | |
| return ["latent"] | |
| def get_dynamic_axes(self): | |
| return { | |
| "images": {0: "B", 2: "8H", 3: "8W"}, | |
| "latent": {0: "B", 2: "H", 3: "W"}, | |
| } | |
| def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape): | |
| assert batch_size >= self.min_batch and batch_size <= self.max_batch | |
| min_batch = batch_size if static_batch else self.min_batch | |
| max_batch = batch_size if static_batch else self.max_batch | |
| self.check_dims(batch_size, image_height, image_width) | |
| ( | |
| min_batch, | |
| max_batch, | |
| min_image_height, | |
| max_image_height, | |
| min_image_width, | |
| max_image_width, | |
| _, | |
| _, | |
| _, | |
| _, | |
| ) = self.get_minmax_dims(batch_size, image_height, image_width, static_batch, static_shape) | |
| return { | |
| "images": [ | |
| (min_batch, 3, min_image_height, min_image_width), | |
| (batch_size, 3, image_height, image_width), | |
| (max_batch, 3, max_image_height, max_image_width), | |
| ], | |
| } | |
| def get_shape_dict(self, batch_size, image_height, image_width): | |
| latent_height, latent_width = self.check_dims(batch_size, image_height, image_width) | |
| return { | |
| "images": (batch_size, 3, image_height, image_width), | |
| "latent": (batch_size, 4, latent_height, latent_width), | |
| } | |
| def get_sample_input(self, batch_size, image_height, image_width): | |
| self.check_dims(batch_size, image_height, image_width) | |
| return torch.randn( | |
| batch_size, | |
| 3, | |
| image_height, | |
| image_width, | |
| dtype=torch.float32, | |
| device=self.device, | |
| ) | |