File size: 16,569 Bytes
b18cfd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
# TensorFlow Lite Android image classification example

This document walks through the code of a simple Android mobile application that
demonstrates
[image classification](https://www.tensorflow.org/lite/models/image_classification/overview)
using the device camera.

## Explore the code

We're now going to walk through the most important parts of the sample code.

### Get camera input

This mobile application gets the camera input using the functions defined in the
file
[`CameraActivity.java`](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/android/app/src/main/java/org/tensorflow/lite/examples/classification/CameraActivity.java).
This file depends on
[`AndroidManifest.xml`](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/android/app/src/main/AndroidManifest.xml)
to set the camera orientation.

`CameraActivity` also contains code to capture user preferences from the UI and
make them available to other classes via convenience methods.

```java
model = Model.valueOf(modelSpinner.getSelectedItem().toString().toUpperCase());
device = Device.valueOf(deviceSpinner.getSelectedItem().toString());
numThreads = Integer.parseInt(threadsTextView.getText().toString().trim());
```

### Classifier

This Image Classification Android reference app demonstrates two implementation
solutions,
[`lib_task_api`](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/android/lib_task_api)
that leverages the out-of-box API from the
[TensorFlow Lite Task Library](https://www.tensorflow.org/lite/inference_with_metadata/task_library/image_classifier),
and
[`lib_support`](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/android/lib_support)
that creates the custom inference pipleline using the
[TensorFlow Lite Support Library](https://www.tensorflow.org/lite/inference_with_metadata/lite_support).

Both solutions implement the file `Classifier.java` (see
[the one in lib_task_api](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/android/lib_task_api/src/main/java/org/tensorflow/lite/examples/classification/tflite/Classifier.java)
and
[the one in lib_support](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/android/lib_support/src/main/java/org/tensorflow/lite/examples/classification/tflite/Classifier.java))
that contains most of the complex logic for processing the camera input and
running inference.

Two subclasses of the `Classifier` exist, as in `ClassifierFloatMobileNet.java`
and `ClassifierQuantizedMobileNet.java`, which contain settings for both
floating point and
[quantized](https://www.tensorflow.org/lite/performance/post_training_quantization)
models.

The `Classifier` class implements a static method, `create`, which is used to
instantiate the appropriate subclass based on the supplied model type (quantized
vs floating point).

#### Using the TensorFlow Lite Task Library

Inference can be done using just a few lines of code with the
[`ImageClassifier`](https://www.tensorflow.org/lite/inference_with_metadata/task_library/image_classifier)
in the TensorFlow Lite Task Library.

##### Load model and create ImageClassifier

`ImageClassifier` expects a model populated with the
[model metadata](https://www.tensorflow.org/lite/convert/metadata) and the label
file. See the
[model compatibility requirements](https://www.tensorflow.org/lite/inference_with_metadata/task_library/image_classifier#model_compatibility_requirements)
for more details.

`ImageClassifierOptions` allows manipulation on various inference options, such
as setting the maximum number of top scored results to return using
`setMaxResults(MAX_RESULTS)`, and setting the score threshold using
`setScoreThreshold(scoreThreshold)`.

```java
// Create the ImageClassifier instance.
ImageClassifierOptions options =
    ImageClassifierOptions.builder().setMaxResults(MAX_RESULTS).build();
imageClassifier = ImageClassifier.createFromFileAndOptions(activity,
    getModelPath(), options);
```

`ImageClassifier` currently does not support configuring delegates and
multithread, but those are on our roadmap. Please stay tuned!

##### Run inference

`ImageClassifier` contains builtin logic to preprocess the input image, such as
rotating and resizing an image. Processing options can be configured through
`ImageProcessingOptions`. In the following example, input images are rotated to
the up-right angle and cropped to the center as the model expects a square input
(`224x224`). See the
[Java doc of `ImageClassifier`](https://github.com/tensorflow/tflite-support/blob/195b574f0aa9856c618b3f1ad87bd185cddeb657/tensorflow_lite_support/java/src/java/org/tensorflow/lite/task/core/vision/ImageProcessingOptions.java#L22)
for more details about how the underlying image processing is performed.

```java
TensorImage inputImage = TensorImage.fromBitmap(bitmap);
int width = bitmap.getWidth();
int height = bitmap.getHeight();
int cropSize = min(width, height);
ImageProcessingOptions imageOptions =
    ImageProcessingOptions.builder()
        .setOrientation(getOrientation(sensorOrientation))
        // Set the ROI to the center of the image.
        .setRoi(
            new Rect(
                /*left=*/ (width - cropSize) / 2,
                /*top=*/ (height - cropSize) / 2,
                /*right=*/ (width + cropSize) / 2,
                /*bottom=*/ (height + cropSize) / 2))
        .build();

List<Classifications> results = imageClassifier.classify(inputImage,
    imageOptions);
```

The output of `ImageClassifier` is a list of `Classifications` instance, where
each `Classifications` element is a single head classification result. All the
demo models are single head models, therefore, `results` only contains one
`Classifications` object. Use `Classifications.getCategories()` to get a list of
top-k categories as specified with `MAX_RESULTS`. Each `Category` object
contains the srting label and the score of that category.

To match the implementation of
[`lib_support`](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/android/lib_support),
`results` is converted into `List<Recognition>` in the method,
`getRecognitions`.

#### Using the TensorFlow Lite Support Library

##### Load model and create interpreter

To perform inference, we need to load a model file and instantiate an
`Interpreter`. This happens in the constructor of the `Classifier` class, along
with loading the list of class labels. Information about the device type and
number of threads is used to configure the `Interpreter` via the
`Interpreter.Options` instance passed into its constructor. Note that if a GPU,
DSP (Digital Signal Processor) or NPU (Neural Processing Unit) is available, a
[`Delegate`](https://www.tensorflow.org/lite/performance/delegates) can be used
to take full advantage of these hardware.

Please note that there are performance edge cases and developers are adviced to
test with a representative set of devices prior to production.

```java
protected Classifier(Activity activity, Device device, int numThreads) throws
    IOException {
  tfliteModel = FileUtil.loadMappedFile(activity, getModelPath());
  switch (device) {
    case NNAPI:
      nnApiDelegate = new NnApiDelegate();
      tfliteOptions.addDelegate(nnApiDelegate);
      break;
    case GPU:
      gpuDelegate = new GpuDelegate();
      tfliteOptions.addDelegate(gpuDelegate);
      break;
    case CPU:
      break;
  }
  tfliteOptions.setNumThreads(numThreads);
  tflite = new Interpreter(tfliteModel, tfliteOptions);
  labels = FileUtil.loadLabels(activity, getLabelPath());
...
```

For Android devices, we recommend pre-loading and memory mapping the model file
to offer faster load times and reduce the dirty pages in memory. The method
`FileUtil.loadMappedFile` does this, returning a `MappedByteBuffer` containing
the model.

The `MappedByteBuffer` is passed into the `Interpreter` constructor, along with
an `Interpreter.Options` object. This object can be used to configure the
interpreter, for example by setting the number of threads (`.setNumThreads(1)`)
or enabling [NNAPI](https://developer.android.com/ndk/guides/neuralnetworks)
(`.addDelegate(nnApiDelegate)`).

##### Pre-process bitmap image

Next in the `Classifier` constructor, we take the input camera bitmap image,
convert it to a `TensorImage` format for efficient processing and pre-process
it. The steps are shown in the private 'loadImage' method:

```java
/** Loads input image, and applys preprocessing. */
private TensorImage loadImage(final Bitmap bitmap, int sensorOrientation) {
  // Loads bitmap into a TensorImage.
  image.load(bitmap);

  // Creates processor for the TensorImage.
  int cropSize = Math.min(bitmap.getWidth(), bitmap.getHeight());
  int numRoration = sensorOrientation / 90;
  ImageProcessor imageProcessor =
      new ImageProcessor.Builder()
          .add(new ResizeWithCropOrPadOp(cropSize, cropSize))
          .add(new ResizeOp(imageSizeX, imageSizeY, ResizeMethod.BILINEAR))
          .add(new Rot90Op(numRoration))
          .add(getPreprocessNormalizeOp())
          .build();
  return imageProcessor.process(inputImageBuffer);
}
```

The pre-processing is largely the same for quantized and float models with one
exception: Normalization.

In `ClassifierFloatMobileNet`, the normalization parameters are defined as:

```java
private static final float IMAGE_MEAN = 127.5f;
private static final float IMAGE_STD = 127.5f;
```

In `ClassifierQuantizedMobileNet`, normalization is not required. Thus the
nomalization parameters are defined as:

```java
private static final float IMAGE_MEAN = 0.0f;
private static final float IMAGE_STD = 1.0f;
```

##### Allocate output object

Initiate the output `TensorBuffer` for the output of the model.

```java
/** Output probability TensorBuffer. */
private final TensorBuffer outputProbabilityBuffer;

//...
// Get the array size for the output buffer from the TensorFlow Lite model file
int probabilityTensorIndex = 0;
int[] probabilityShape =
    tflite.getOutputTensor(probabilityTensorIndex).shape(); // {1, 1001}
DataType probabilityDataType =
    tflite.getOutputTensor(probabilityTensorIndex).dataType();

// Creates the output tensor and its processor.
outputProbabilityBuffer =
    TensorBuffer.createFixedSize(probabilityShape, probabilityDataType);

// Creates the post processor for the output probability.
probabilityProcessor =
    new TensorProcessor.Builder().add(getPostprocessNormalizeOp()).build();
```

For quantized models, we need to de-quantize the prediction with the NormalizeOp
(as they are all essentially linear transformation). For float model,
de-quantize is not required. But to uniform the API, de-quantize is added to
float model too. Mean and std are set to 0.0f and 1.0f, respectively. To be more
specific,

In `ClassifierQuantizedMobileNet`, the normalized parameters are defined as:

```java
private static final float PROBABILITY_MEAN = 0.0f;
private static final float PROBABILITY_STD = 255.0f;
```

In `ClassifierFloatMobileNet`, the normalized parameters are defined as:

```java
private static final float PROBABILITY_MEAN = 0.0f;
private static final float PROBABILITY_STD = 1.0f;
```

##### Run inference

Inference is performed using the following in `Classifier` class:

```java
tflite.run(inputImageBuffer.getBuffer(),
    outputProbabilityBuffer.getBuffer().rewind());
```

##### Recognize image

Rather than call `run` directly, the method `recognizeImage` is used. It accepts
a bitmap and sensor orientation, runs inference, and returns a sorted `List` of
`Recognition` instances, each corresponding to a label. The method will return a
number of results bounded by `MAX_RESULTS`, which is 3 by default.

`Recognition` is a simple class that contains information about a specific
recognition result, including its `title` and `confidence`. Using the
post-processing normalization method specified, the confidence is converted to
between 0 and 1 of a given class being represented by the image.

```java
/** Gets the label to probability map. */
Map<String, Float> labeledProbability =
    new TensorLabel(labels,
        probabilityProcessor.process(outputProbabilityBuffer))
        .getMapWithFloatValue();
```

A `PriorityQueue` is used for sorting.

```java
/** Gets the top-k results. */
private static List<Recognition> getTopKProbability(
    Map<String, Float> labelProb) {
  // Find the best classifications.
  PriorityQueue<Recognition> pq =
      new PriorityQueue<>(
          MAX_RESULTS,
          new Comparator<Recognition>() {
            @Override
            public int compare(Recognition lhs, Recognition rhs) {
              // Intentionally reversed to put high confidence at the head of
              // the queue.
              return Float.compare(rhs.getConfidence(), lhs.getConfidence());
            }
          });

  for (Map.Entry<String, Float> entry : labelProb.entrySet()) {
    pq.add(new Recognition("" + entry.getKey(), entry.getKey(),
               entry.getValue(), null));
  }

  final ArrayList<Recognition> recognitions = new ArrayList<>();
  int recognitionsSize = Math.min(pq.size(), MAX_RESULTS);
  for (int i = 0; i < recognitionsSize; ++i) {
    recognitions.add(pq.poll());
  }
  return recognitions;
}
```

### Display results

The classifier is invoked and inference results are displayed by the
`processImage()` function in
[`ClassifierActivity.java`](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/android/app/src/main/java/org/tensorflow/lite/examples/classification/ClassifierActivity.java).

`ClassifierActivity` is a subclass of `CameraActivity` that contains method
implementations that render the camera image, run classification, and display
the results. The method `processImage()` runs classification on a background
thread as fast as possible, rendering information on the UI thread to avoid
blocking inference and creating latency.

```java
@Override
protected void processImage() {
  rgbFrameBitmap.setPixels(getRgbBytes(), 0, previewWidth, 0, 0, previewWidth,
      previewHeight);
  final int imageSizeX = classifier.getImageSizeX();
  final int imageSizeY = classifier.getImageSizeY();

  runInBackground(
      new Runnable() {
        @Override
        public void run() {
          if (classifier != null) {
            final long startTime = SystemClock.uptimeMillis();
            final List<Classifier.Recognition> results =
                classifier.recognizeImage(rgbFrameBitmap, sensorOrientation);
            lastProcessingTimeMs = SystemClock.uptimeMillis() - startTime;
            LOGGER.v("Detect: %s", results);

            runOnUiThread(
                new Runnable() {
                  @Override
                  public void run() {
                    showResultsInBottomSheet(results);
                    showFrameInfo(previewWidth + "x" + previewHeight);
                    showCropInfo(imageSizeX + "x" + imageSizeY);
                    showCameraResolution(imageSizeX + "x" + imageSizeY);
                    showRotationInfo(String.valueOf(sensorOrientation));
                    showInference(lastProcessingTimeMs + "ms");
                  }
                });
          }
          readyForNextImage();
        }
      });
}
```

Another important role of `ClassifierActivity` is to determine user preferences
(by interrogating `CameraActivity`), and instantiate the appropriately
configured `Classifier` subclass. This happens when the video feed begins (via
`onPreviewSizeChosen()`) and when options are changed in the UI (via
`onInferenceConfigurationChanged()`).

```java
private void recreateClassifier(Model model, Device device, int numThreads) {
  if (classifier != null) {
    LOGGER.d("Closing classifier.");
    classifier.close();
    classifier = null;
  }
  if (device == Device.GPU && model == Model.QUANTIZED) {
    LOGGER.d("Not creating classifier: GPU doesn't support quantized models.");
    runOnUiThread(
        () -> {
          Toast.makeText(this, "GPU does not yet supported quantized models.",
              Toast.LENGTH_LONG)
              .show();
        });
    return;
  }
  try {
    LOGGER.d(
        "Creating classifier (model=%s, device=%s, numThreads=%d)", model,
        device, numThreads);
    classifier = Classifier.create(this, model, device, numThreads);
  } catch (IOException e) {
    LOGGER.e(e, "Failed to create classifier.");
  }
}
```