Spaces:
Sleeping
Sleeping
Create memory_manager.py
Browse files- memory_manager.py +104 -0
memory_manager.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pickle
|
3 |
+
import threading
|
4 |
+
import logging
|
5 |
+
from queue import Queue, Empty
|
6 |
+
from datetime import datetime
|
7 |
+
from functools import lru_cache
|
8 |
+
import numpy as np
|
9 |
+
import faiss
|
10 |
+
from sentence_transformers import SentenceTransformer
|
11 |
+
from time import perf_counter
|
12 |
+
|
13 |
+
# Configuration
|
14 |
+
MEMORY_FILE = os.environ.get("MEMORY_FILE", "memory.pkl")
|
15 |
+
INDEX_FILE = os.environ.get("INDEX_FILE", "memory.index")
|
16 |
+
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "all-MiniLM-L6-v2")
|
17 |
+
|
18 |
+
# Logging setup
|
19 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s %(message)s")
|
20 |
+
|
21 |
+
# Load embedding model
|
22 |
+
embedding_model = SentenceTransformer(EMBEDDING_MODEL)
|
23 |
+
|
24 |
+
# Initialize memory store and FAISS index
|
25 |
+
try:
|
26 |
+
memory_data = pickle.load(open(MEMORY_FILE, "rb"))
|
27 |
+
memory_index = faiss.read_index(INDEX_FILE)
|
28 |
+
logging.info("Loaded existing memory and index.")
|
29 |
+
except Exception:
|
30 |
+
memory_data = []
|
31 |
+
dimension = embedding_model.get_sentence_embedding_dimension()
|
32 |
+
memory_index = faiss.IndexFlatL2(dimension)
|
33 |
+
logging.info("Initialized new memory and index.")
|
34 |
+
|
35 |
+
# Queue and worker for async flushing
|
36 |
+
_write_queue = Queue()
|
37 |
+
|
38 |
+
def _flush_worker():
|
39 |
+
"""Background thread: batch writes to disk."""
|
40 |
+
while True:
|
41 |
+
batch = []
|
42 |
+
try:
|
43 |
+
item = _write_queue.get(timeout=5)
|
44 |
+
batch.append(item)
|
45 |
+
except Empty:
|
46 |
+
pass
|
47 |
+
# Drain queue
|
48 |
+
while not _write_queue.empty():
|
49 |
+
batch.append(_write_queue.get_nowait())
|
50 |
+
if batch:
|
51 |
+
try:
|
52 |
+
pickle.dump(memory_data, open(MEMORY_FILE, "wb"))
|
53 |
+
faiss.write_index(memory_index, INDEX_FILE)
|
54 |
+
logging.info(f"Flushed {len(batch)} entries to disk.")
|
55 |
+
except Exception as e:
|
56 |
+
logging.error(f"Flush error: {e}")
|
57 |
+
|
58 |
+
# Start flush thread
|
59 |
+
t = threading.Thread(target=_flush_worker, daemon=True)
|
60 |
+
t.start()
|
61 |
+
|
62 |
+
@lru_cache(maxsize=512)
|
63 |
+
def get_embedding(text: str) -> np.ndarray:
|
64 |
+
"""Compute embedding with timing."""
|
65 |
+
start = perf_counter()
|
66 |
+
vec = embedding_model.encode(text)
|
67 |
+
elapsed = perf_counter() - start
|
68 |
+
logging.info(f"get_embedding: {elapsed:.3f}s for '{text[:20]}...'")
|
69 |
+
return vec
|
70 |
+
|
71 |
+
|
72 |
+
def embed_and_store(text: str, agent: str = "system", topic: str = ""):
|
73 |
+
"""Embed text, add to FAISS and queue disk write."""
|
74 |
+
try:
|
75 |
+
vec = get_embedding(text)
|
76 |
+
memory_index.add(np.array([vec], dtype='float32'))
|
77 |
+
memory_data.append({
|
78 |
+
"text": text,
|
79 |
+
"agent": agent,
|
80 |
+
"topic": topic,
|
81 |
+
"timestamp": datetime.now().isoformat()
|
82 |
+
})
|
83 |
+
_write_queue.put(True)
|
84 |
+
logging.info(f"Queued memory: {agent} / '{text[:20]}...'")
|
85 |
+
except Exception as e:
|
86 |
+
logging.error(f"embed_and_store error: {e}")
|
87 |
+
|
88 |
+
|
89 |
+
def retrieve_relevant(query: str, k: int = 5) -> list:
|
90 |
+
"""Return top-k relevant memory entries."""
|
91 |
+
try:
|
92 |
+
q_vec = get_embedding(query)
|
93 |
+
D, I = memory_index.search(np.array([q_vec], dtype='float32'), k)
|
94 |
+
results = []
|
95 |
+
for dist, idx in zip(D[0], I[0]):
|
96 |
+
if idx < len(memory_data):
|
97 |
+
entry = memory_data[idx]
|
98 |
+
entry_copy = entry.copy()
|
99 |
+
entry_copy['similarity'] = 1 - dist
|
100 |
+
results.append(entry_copy)
|
101 |
+
return results
|
102 |
+
except Exception as e:
|
103 |
+
logging.error(f"retrieve_relevant error: {e}")
|
104 |
+
return []
|