Deepseek / agent_engine.py
Leonydis137's picture
Update agent_engine.py
71414fa verified
import os
import logging
import requests
from time import perf_counter, sleep
from memory_manager import embed_and_store, retrieve_relevant
# Agent prompts
PROMPTS = {
"Initiator": "You are the Discussion Initiator...",
"Responder": "You are the Critical Responder...",
"Guardian": "You are the Depth Guardian...",
"Provocateur": "You are the Cross-Disciplinary Provocateur...",
"Cultural": "You are the Cultural Perspective...",
"Judge": "You are the Impartial Judge..."
}
CHAT_MODEL = os.environ.get("CHAT_MODEL", "HuggingFaceH4/zephyr-7b-beta")
HF_API_TOKEN = os.environ.get("HF_API_TOKEN", "")
logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s %(message)s")
def safe_chat(system_prompt: str, history: list, temperature: float = 0.7) -> str:
"""Call HF inference API with fallback formatting."""
start = perf_counter()
chat_history = "\n".join([f"{msg['role'].capitalize()}: {msg['content']}" for msg in history])
full_prompt = f"{system_prompt}\n\n{chat_history}\n\nAssistant:"
payload = {
"inputs": full_prompt,
"parameters": {"max_new_tokens": 300, "temperature": temperature}
}
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"} if HF_API_TOKEN else {}
try:
resp = requests.post(
f"https://api-inference.huggingface.co/models/{CHAT_MODEL}",
json=payload,
headers=headers,
timeout=60
)
if resp.status_code == 200:
data = resp.json()
text = data[0].get("generated_text", "").strip() if isinstance(data, list) else data.get("generated_text", "").strip()
elif resp.status_code == 503:
logging.warning("Model loading… retrying after 15s.")
sleep(15)
return safe_chat(system_prompt, history, temperature)
else:
logging.error(f"HF error {resp.status_code}: {resp.text}")
text = f"⚠️ API Error {resp.status_code}"
except Exception as e:
logging.error(f"safe_chat exception: {e}")
text = f"⚠️ System Error: {e}"
elapsed = perf_counter() - start
logging.info(f"safe_chat: {elapsed:.3f}s for prompt '{system_prompt[:30]}…'")
return text
def step_turn(conversation: list, turn: int, topic: str, params: dict) -> list:
"""Advance one turn of the multi-agent conversation."""
sequence = ["Initiator", "Responder", "Guardian", "Provocateur", "Cultural"]
agent = sequence[turn % len(sequence)]
prompt = PROMPTS.get(agent, "")
history = [{"role": "user", "content": msg['text']} for msg in conversation[-5:] if msg['agent'] != "System"]
response = safe_chat(prompt, history, temperature=params[agent]['creativity'])
embed_and_store(response, agent, topic)
conversation.append({"agent": agent, "text": response, "turn": turn + 1})
return conversation