File size: 35,064 Bytes
a90b38f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd7f92f
 
a90b38f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd7f92f
 
 
 
 
 
 
 
 
a90b38f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd7f92f
a90b38f
 
 
bd7f92f
 
a90b38f
 
bd7f92f
 
a90b38f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd7f92f
a90b38f
 
 
 
 
 
 
bd7f92f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a90b38f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd7f92f
 
 
 
 
 
9106848
bd7f92f
 
 
 
 
9106848
bd7f92f
 
 
 
 
 
 
 
 
 
 
 
 
9106848
bd7f92f
9106848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a90b38f
9106848
a90b38f
 
9106848
a90b38f
 
 
 
 
9106848
a90b38f
 
9106848
a90b38f
 
 
 
9106848
a90b38f
9106848
a90b38f
 
9106848
a90b38f
 
9106848
a90b38f
9106848
a90b38f
 
 
 
9106848
a90b38f
 
 
 
 
9106848
a90b38f
 
 
 
 
9106848
a90b38f
 
 
 
 
 
9106848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a90b38f
9106848
a90b38f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
# app.py - DeepSeek Hexa-Agent Discussion Platform
import gradio as gr
import openai
import threading
import time
import numpy as np
import faiss
import os
import pickle
from datetime import datetime
import re
import json
import matplotlib.pyplot as plt
import networkx as nx
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
from reportlab.lib.styles import getSampleStyleSheet
from functools import lru_cache
import requests

# === CONFIG ===
EMBEDDING_MODEL = "text-embedding-3-small"
CHAT_MODEL = "gpt-4o"
MEMORY_FILE = "memory.pkl"
INDEX_FILE = "memory.index"
openai.api_key = os.environ.get("OPENAI_API_KEY")

# === EMBEDDING UTILS ===
@lru_cache(maxsize=500)
def get_embedding(text, model=EMBEDDING_MODEL):
    """Cached embedding function for performance"""
    text = text.replace("\n", " ")
    try:
        response = openai.embeddings.create(input=[text], model=model)
        return response.data[0].embedding
    except AttributeError:
        response = openai.Embedding.create(input=[text], model=model)
        return response['data'][0]['embedding']

def cosine_similarity(vec1, vec2):
    vec1 = np.array(vec1)
    vec2 = np.array(vec2)
    return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))

# === MEMORY INITIALIZATION ===
memory_data = []
try:
    memory_index = faiss.read_index(INDEX_FILE)
    with open(MEMORY_FILE, "rb") as f:
        memory_data = pickle.load(f)
except:
    memory_index = faiss.IndexFlatL2(1536)

# === AGENT SYSTEM PROMPTS (Configurable) ===
AGENT_A_PROMPT = """You are the Discussion Initiator. Your role:
1. Introduce complex topics requiring multidisciplinary perspectives
2. Frame debates exploring tensions between values, ethics, and progress
3. Challenge assumptions while maintaining intellectual humility
4. Connect concepts across domains (science, ethics, policy, technology)
5. Elevate discussions beyond surface-level analysis"""

AGENT_B_PROMPT = """You are the Critical Responder. Your role:
1. Provide counterpoints with evidence-based reasoning
2. Identify logical fallacies and cognitive biases in arguments
3. Analyze implications at different scales (individual, societal, global)
4. Consider second and third-order consequences
5. Balance idealism with practical constraints"""

OVERSEER_PROMPT = """You are the Depth Guardian. Your role:
1. Ensure discussions maintain intellectual rigor
2. Intervene when conversations become superficial or repetitive
3. Highlight unexamined assumptions and blind spots
4. Introduce relevant frameworks (systems thinking, ethical paradigms)
5. Prompt consideration of marginalized perspectives
6. Synthesize key tensions and paradoxes"""

OUTSIDER_PROMPT = """You are the Cross-Disciplinary Provocateur. Your role:
1. Introduce radical perspectives from unrelated fields
2. Challenge conventional wisdom with contrarian viewpoints
3. Surface historical precedents and analogies
4. Propose unconventional solutions to complex problems
5. Highlight overlooked connections and systemic relationships
6. Question the framing of the discussion itself"""

CULTURAL_LENS_PROMPT = """You are the Cultural Perspective. Your role:
1. Provide viewpoints from diverse global cultures (Eastern, Western, Indigenous, African, etc.)
2. Highlight how cultural values shape perspectives on the topic
3. Identify cultural biases in arguments and assumptions
4. Share traditions and practices relevant to the discussion
5. Suggest culturally inclusive approaches to solutions
6. Bridge cultural divides through nuanced understanding
7. Consider post-colonial and decolonial perspectives"""

JUDGE_PROMPT = """You are the Impartial Judge. Your role:
1. Periodically review the discussion and provide balanced rulings
2. Identify areas of agreement and unresolved tensions
3. Evaluate the strength of arguments from different perspectives
4. Highlight the most compelling insights and critical flaws
5. Suggest pathways toward resolution or further inquiry
6. Deliver rulings with clear justification and constructive guidance
7. Maintain objectivity while acknowledging valid points from all sides
8. Consider ethical implications and practical feasibility"""

# === GLOBAL STATE ===
conversation = []
turn_count = 0
auto_mode = False
current_topic = ""
last_ruling_turn = 0
agent_params = {
    "Initiator": {"creativity": 0.7, "criticality": 0.5},
    "Responder": {"creativity": 0.5, "criticality": 0.8},
    "Guardian": {"creativity": 0.6, "criticality": 0.9},
    "Provocateur": {"creativity": 0.9, "criticality": 0.7},
    "Cultural": {"creativity": 0.7, "criticality": 0.6},
    "Judge": {"creativity": 0.4, "criticality": 0.9}
}

# === ERROR-HANDLED API CALLS ===
def safe_chat_completion(system, messages, model=CHAT_MODEL, temperature=0.7, max_retries=3):
    """Robust API call with exponential backoff"""
    for attempt in range(max_retries):
        try:
            full_messages = [{"role": "system", "content": system}] 
            full_messages.extend(messages)
            
            try:
                response = openai.chat.completions.create(
                    model=model,
                    messages=full_messages,
                    temperature=temperature,
                    max_tokens=300
                )
                return response.choices[0].message.content.strip()
            except AttributeError:
                response = openai.ChatCompletion.create(
                    model=model,
                    messages=full_messages,
                    temperature=temperature,
                    max_tokens=300
                )
                return response['choices'][0]['message']['content'].strip()
        except Exception as e:
            if attempt < max_retries - 1:
                wait_time = 2 ** attempt
                print(f"API error: {e}. Retrying in {wait_time} seconds...")
                time.sleep(wait_time)
            else:
                return f"⚠️ API Error: {str(e)}"
    return "⚠️ Max retries exceeded"

# === MEMORY MANAGEMENT ===
def embed_and_store(text, agent=None):
    try:
        vec = get_embedding(text)
        memory_index.add(np.array([vec], dtype='float32'))
        memory_data.append({
            "text": text,
            "timestamp": datetime.now().isoformat(),
            "agent": agent or "system",
            "topic": current_topic
        })
        if len(memory_data) % 5 == 0:
            with open(MEMORY_FILE, "wb") as f:
                pickle.dump(memory_data, f)
            faiss.write_index(memory_index, INDEX_FILE)
    except Exception as e:
        print(f"Memory Error: {str(e)}")

def retrieve_relevant_memory(query, k=3):
    """Retrieve relevant past discussions"""
    try:
        query_embedding = get_embedding(query)
        distances, indices = memory_index.search(np.array([query_embedding], dtype='float32'), k)
        
        relevant = []
        for i, idx in enumerate(indices[0]):
            if idx < len(memory_data) and idx >= 0:
                relevant.append({
                    "text": memory_data[idx]['text'][:200] + "...",
                    "topic": memory_data[idx].get('topic', 'Unknown'),
                    "agent": memory_data[idx].get('agent', 'Unknown'),
                    "similarity": 1 - distances[0][i]  # Convert distance to similarity
                })
        return relevant
    except Exception as e:
        print(f"Memory retrieval error: {str(e)}")
        return []

# === CONVERSATION UTILITIES ===
def format_convo():
    return "\n".join([f"**{m['agent']}**: {m['text']}" for m in conversation])

def detect_superficiality():
    """Detect shallow arguments using linguistic analysis"""
    if len(conversation) < 3:
        return False
        
    last_texts = [m['text'] for m in conversation[-3:]]
    
    # Linguistic markers of superficiality
    superficial_indicators = [
        r"\b(obviously|clearly|everyone knows)\b",
        r"\b(simply|just|merely)\b",
        r"\b(always|never)\b",
        r"\b(I (think|believe|feel))\b",
        r"\b(without question|undeniably)\b"
    ]
    
    # Argument depth markers
    depth_markers = [
        r"\b(however|conversely|paradoxically)\b",
        r"\b(evidence suggests|studies indicate)\b",
        r"\b(complex interplay|multifaceted nature)\b",
        r"\b(trade-off|tension between)\b",
        r"\b(historical precedent|comparative analysis)\b"
    ]
    
    superficial_count = 0
    depth_count = 0
    
    for text in last_texts:
        for pattern in superficial_indicators:
            if re.search(pattern, text, re.IGNORECASE):
                superficial_count += 1
        for pattern in depth_markers:
            if re.search(pattern, text, re.IGNORECASE):
                depth_count += 1
                
    return superficial_count > depth_count * 2

def batch_cosine_similarity(embeddings):
    """Efficient batch similarity calculation"""
    norms = np.linalg.norm(embeddings, axis=1)
    dot_matrix = np.dot(embeddings, embeddings.T)
    norm_matrix = np.outer(norms, norms)
    return dot_matrix / norm_matrix

def detect_repetition():
    """Check if recent messages are conceptually similar"""
    if len(conversation) < 4:
        return False
        
    recent = [m['text'] for m in conversation[-4:]]
    embeddings = [get_embedding(text) for text in recent]
    
    # Use batch processing for efficiency
    similarity_matrix = batch_cosine_similarity(np.array(embeddings))
    
    # Check similarity between current and previous messages
    return any(similarity_matrix[-1][i] > 0.82 for i in range(len(embeddings)-1))

def detect_cultural_relevance():
    """Check if cultural perspectives are needed"""
    if len(conversation) < 2:
        return False
        
    last_texts = " ".join([m['text'] for m in conversation[-2:]])
    cultural_triggers = [
        "society", "culture", "values", "tradition",
        "global", "western", "eastern", "indigenous",
        "community", "norms", "beliefs", "diversity",
        "equity", "identity", "heritage", "colonial"
    ]
    
    for trigger in cultural_triggers:
        if trigger in last_texts.lower():
            return True
    return False

def detect_judgment_opportunity():
    """Identify when the discussion is ripe for judgment"""
    if len(conversation) < 8:
        return False
        
    # Check for unresolved tensions
    last_texts = " ".join([m['text'] for m in conversation[-4:]])
    judgment_triggers = [
        "tension", "dilemma", "paradox", "conflict",
        "disagreement", "opposing views", "unresolved",
        "contradiction", "impasse", "standoff"
    ]
    
    for trigger in judgment_triggers:
        if trigger in last_texts.lower():
            return True
    return False

# === AGENT FUNCTIONS ===
def generate_topic():
    """Generate a complex discussion topic"""
    topic = safe_chat_completion(
        "Generate a complex discussion topic requiring multidisciplinary and multicultural analysis",
        [{"role": "user", "content": "Create a topic addressing tensions between technological progress, ethics, and cultural values"}]
    )
    return topic.split(":")[-1].strip() if ":" in topic else topic

def outsider_comment():
    """Generate outsider perspective"""
    context = "\n".join([f"{m['agent']}: {m['text']}" for m in conversation[-4:]])
    prompt = f"Conversation Context:\n{context}\n\nProvide your cross-disciplinary perspective:"
    
    # Apply agent parameters
    params = agent_params["Provocateur"]
    temp = 0.5 + params["creativity"] * 0.5  # Map to 0.5-1.0 range
    
    return safe_chat_completion(
        OUTSIDER_PROMPT, 
        [{"role": "user", "content": prompt}],
        temperature=temp
    )

def cultural_perspective():
    """Generate cultural diversity perspective"""
    context = "\n".join([f"{m['agent']}: {m['text']}" for m in conversation[-4:]])
    prompt = f"Conversation Context:\n{context}\n\nProvide diverse cultural perspectives on this topic:"
    
    # Apply agent parameters
    params = agent_params["Cultural"]
    temp = 0.5 + params["creativity"] * 0.5
    
    return safe_chat_completion(
        CULTURAL_LENS_PROMPT, 
        [{"role": "user", "content": prompt}],
        temperature=temp
    )

def judge_ruling():
    """Generate final judgment or ruling"""
    global last_ruling_turn
    
    # Create comprehensive context
    context = "\n\n".join([
        f"Discussion Topic: {current_topic}",
        "Key Arguments:",
        *[f"- {m['agent']}: {m['text']}" for m in conversation[-8:]]
    ])
    
    prompt = f"""After reviewing this discussion, provide your impartial judgment:
{context}

Your ruling should:
1. Identify areas of agreement and unresolved tensions
2. Evaluate the strength of key arguments
3. Highlight the most compelling insights
4. Suggest pathways toward resolution
5. Consider ethical and practical implications
6. Provide constructive guidance for next steps"""
    
    # Apply agent parameters
    params = agent_params["Judge"]
    temp = 0.3 + params["criticality"] * 0.4  # More critical = lower temperature
    
    ruling = safe_chat_completion(
        JUDGE_PROMPT, 
        [{"role": "user", "content": prompt}],
        temperature=temp
    )
    last_ruling_turn = turn_count
    return ruling

# === CORE CONVERSATION FLOW ===
def step(topic_input=""):
    global conversation, turn_count, current_topic, last_ruling_turn
    
    # Initialize new discussion
    if not conversation:  
        current_topic = topic_input or generate_topic()
        
        # Retrieve relevant memory
        memory_context = retrieve_relevant_memory(current_topic)
        context_str = ""
        if memory_context:
            context_str = "\n\nRelevant past discussions:\n" + "\n".join(
                [f"- {item['agent']} on '{item['topic']}': {item['text']}" 
                 for item in memory_context]
            )
        
        msg = safe_chat_completion(
            AGENT_A_PROMPT, 
            [{"role": "user", "content": f"Initiate a deep discussion on: {current_topic}{context_str}"}],
            temperature=0.5 + agent_params["Initiator"]["creativity"] * 0.5
        )
        conversation.append({"agent": "πŸ’‘ Initiator", "text": msg})
        embed_and_store(msg, "Initiator")
        turn_count = 1
        last_ruling_turn = 0
        return format_convo(), "", "", "", "", current_topic, turn_count, ""
    
    # Critical Responder engages
    last_msg = conversation[-1]['text']
    b_msg = safe_chat_completion(
        AGENT_B_PROMPT, 
        [{"role": "user", "content": f"Topic: {current_topic}\n\nLast statement: {last_msg}"}],
        temperature=0.4 + agent_params["Responder"]["criticality"] * 0.4
    )
    conversation.append({"agent": "πŸ” Responder", "text": b_msg})
    embed_and_store(b_msg, "Responder")
    
    # Initiator counters
    a_msg = safe_chat_completion(
        AGENT_A_PROMPT, 
        [{"role": "user", "content": f"Topic: {current_topic}\n\nCritical response: {b_msg}"}],
        temperature=0.5 + agent_params["Initiator"]["creativity"] * 0.5
    )
    conversation.append({"agent": "πŸ’‘ Initiator", "text": a_msg})
    embed_and_store(a_msg, "Initiator")
    
    # Overseer intervention
    intervention = ""
    if turn_count % 3 == 0 or detect_repetition() or detect_superficiality():
        context = "\n".join([m['text'] for m in conversation[-4:]])
        prompt = f"Topic: {current_topic}\n\nDiscussion Context:\n{context}\n\nDeepen the analysis:"
        intervention = safe_chat_completion(
            OVERSEER_PROMPT, 
            [{"role": "user", "content": prompt}],
            temperature=0.5 + agent_params["Guardian"]["criticality"] * 0.4
        )
        conversation.append({"agent": "βš–οΈ Depth Guardian", "text": intervention})
        embed_and_store(intervention, "Overseer")
    
    # Outsider commentary
    outsider_msg = ""
    if turn_count % 4 == 0 or "paradox" in last_msg.lower():
        outsider_msg = outsider_comment()
        conversation.append({"agent": "🌐 Provocateur", "text": outsider_msg})
        embed_and_store(outsider_msg, "Outsider")
    
    # Cultural perspective
    cultural_msg = ""
    if turn_count % 5 == 0 or detect_cultural_relevance():
        cultural_msg = cultural_perspective()
        conversation.append({"agent": "🌍 Cultural Lens", "text": cultural_msg})
        embed_and_store(cultural_msg, "Cultural")
    
    # Judge ruling
    judge_msg = ""
    ruling_interval = 6  # Turns between rulings
    if (turn_count - last_ruling_turn >= ruling_interval and 
        (turn_count % ruling_interval == 0 or detect_judgment_opportunity())):
        judge_msg = judge_ruling()
        conversation.append({"agent": "βš–οΈ Judge", "text": judge_msg})
        embed_and_store(judge_msg, "Judge")
    
    turn_count += 1
    return format_convo(), intervention, outsider_msg, cultural_msg, judge_msg, current_topic, turn_count, ""

# === ANALYSIS & VISUALIZATION ===
def analyze_conversation():
    """Generate insights about the discussion"""
    # Count agent contributions
    agent_counts = {}
    for msg in conversation:
        agent = msg['agent'].split()[0]  # Remove emoji
        agent_counts[agent] = agent_counts.get(agent, 0) + 1
    
    # Sentiment analysis
    sentiment_prompt = f"Analyze overall sentiment of this discussion:\n{format_convo()}"
    sentiment = safe_chat_completion(
        "You are a sentiment analysis expert. Provide a brief assessment of the discussion tone.",
        [{"role": "user", "content": sentiment_prompt}]
    )
    
    # Topic extraction
    topic_prompt = f"Extract key topics from this discussion:\n{format_convo()}"
    topics = safe_chat_completion(
        "You are a topic extraction expert. List the top 5 topics as a JSON array.",
        [{"role": "user", "content": topic_prompt}]
    )
    
    try:
        topics = json.loads(topics)
    except:
        topics = ["Topic extraction failed"]
    
    return {
        "agents": list(agent_counts.keys()),
        "counts": [agent_counts.get(a, 0) for a in list(agent_counts.keys())],
        "topics": topics,
        "sentiment": sentiment
    }

def generate_knowledge_graph():
    """Create a knowledge graph of discussion concepts"""
    # Extract entities and relationships
    extraction_prompt = f"""
    Analyze this discussion and extract:
    1. Key concepts (nouns, important terms)
    2. Relationships between concepts (verb phrases)
    
    Discussion:
    {format_convo()}
    
    Return as JSON: {{"concepts": ["list", "of", "concepts"], "relationships": [["concept1", "relationship", "concept2"]]}}
    """
    
    try:
        graph_data = safe_chat_completion(
            "You are a knowledge graph extraction expert.",
            [{"role": "user", "content": extraction_prompt}]
        )
        graph_data = json.loads(graph_data)
        
        # Create graph visualization
        G = nx.DiGraph()
        G.add_nodes_from(graph_data["concepts"])
        
        for rel in graph_data["relationships"]:
            if len(rel) == 3:
                G.add_edge(rel[0], rel[2], label=rel[1])
        
        plt.figure(figsize=(10, 8))
        pos = nx.spring_layout(G, seed=42)
        nx.draw(G, pos, with_labels=True, node_size=2000, node_color="skyblue", font_size=10)
        edge_labels = nx.get_edge_attributes(G, 'label')
        nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels)
        plt.title("Discussion Knowledge Graph")
        plt.savefig("knowledge_graph.png")
        return "knowledge_graph.png"
    except Exception as e:
        print(f"Graph error: {str(e)}")
        return None

# === EXPORT FUNCTIONS ===
def export_pdf_report():
    """Generate PDF report of discussion"""
    filename = f"discussion_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.pdf"
    doc = SimpleDocTemplate(filename, pagesize=letter)
    styles = getSampleStyleSheet()
    story = []
    
    # Title
    story.append(Paragraph(f"Discussion Report: {current_topic}", styles['Title']))
    story.append(Spacer(1, 12))
    
    # Summary
    analysis = analyze_conversation()
    story.append(Paragraph("Discussion Summary", styles['Heading2']))
    story.append(Paragraph(f"<b>Turn Count:</b> {turn_count}", styles['BodyText']))
    story.append(Paragraph(f"<b>Sentiment:</b> {analysis['sentiment']}", styles['BodyText']))
    story.append(Spacer(1, 12))
    
    # Key Topics
    story.append(Paragraph("Key Topics", styles['Heading2']))
    for topic in analysis['topics']:
        story.append(Paragraph(f"- {topic}", styles['BodyText']))
    story.append(Spacer(1, 12))
    
    # Full Conversation
    story.append(Paragraph("Full Discussion", styles['Heading2']))
    for msg in conversation:
        story.append(Paragraph(f"<b>{msg['agent']}:</b> {msg['text']}", styles['BodyText']))
        story.append(Spacer(1, 6))
    
    doc.build(story)
    return filename

def export_json_data():
    """Export conversation as JSON"""
    filename = f"discussion_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
    with open(filename, 'w') as f:
        json.dump({
            "topic": current_topic,
            "turns": turn_count,
            "conversation": conversation,
            "analysis": analyze_conversation()
        }, f, indent=2)
    return filename

def export_text_transcript():
    """Export as plain text"""
    filename = f"transcript_{datetime.now().strftime('%Y%m%d_%H%M%S')}.txt"
    with open(filename, 'w') as f:
        f.write(f"Discussion Topic: {current_topic}\n\n")
        f.write("Participants:\n")
        agents = set(msg['agent'] for msg in conversation)
        for agent in agents:
            f.write(f"- {agent}\n")
        
        f.write("\nConversation:\n")
        for msg in conversation:
            f.write(f"{msg['agent']}: {msg['text']}\n\n")
    return filename

# === INTEGRATION FUNCTIONS ===
def send_to_webhook(url):
    """Send discussion data to external webhook"""
    try:
        payload = {
            "topic": current_topic,
            "turns": turn_count,
            "conversation": conversation,
            "timestamp": datetime.now().isoformat()
        }
        response = requests.post(url, json=payload, timeout=10)
        if response.status_code == 200:
            return "βœ… Data sent successfully!"
        else:
            return f"⚠️ Error {response.status_code}: {response.text}"
    except Exception as e:
        return f"⚠️ Connection error: {str(e)}"

# ... [Keep all the imports, config, and function definitions above] ...

# === GRADIO UI ===
with gr.Blocks(theme=gr.themes.Soft(), title="DeepSeek Discussion Platform") as demo:
    gr.Markdown("# 🧠 DeepSeek Hexa-Agent Discussion System")
    gr.Markdown("### AI-Powered Complex Discourse Analysis")
    
    # Status panel
    with gr.Row():
        turn_counter = gr.Number(label="Turn Count", value=0, interactive=False)
        topic_display = gr.Textbox(label="Current Topic", interactive=False, lines=2)
        agent_status = gr.Textbox(label="Active Agents", value="πŸ’‘ Initiator, πŸ” Responder", interactive=False)
    
    # Tabbed interface
    with gr.Tab("Live Discussion"):
        convo_display = gr.HTML(
            value="<div class='convo-container'>Discussion will appear here</div>", 
            elem_id="convo-display"
        )
        
        with gr.Row():
            step_btn = gr.Button("▢️ Next Turn", variant="primary")
            auto_btn = gr.Button("πŸ”΄ Auto: OFF", variant="secondary")
            clear_btn = gr.Button("πŸ”„ New Discussion", variant="stop")
            topic_btn = gr.Button("🎲 Random Topic", variant="secondary")
            ruling_btn = gr.Button("βš–οΈ Request Ruling", variant="primary")
        
        with gr.Accordion("πŸ’¬ Guide the Discussion", open=False):
            topic_input = gr.Textbox(label="Set Custom Topic", placeholder="e.g., Ethics of AGI in cultural contexts...")
            with gr.Row():
                qbox = gr.Textbox(label="Ask the Depth Guardian", placeholder="What perspectives are missing?")
                ruling_qbox = gr.Textbox(label="Specific Question for Judge", placeholder="What should be our guiding principle?")
            with gr.Row():
                overseer_out = gr.Textbox(label="Depth Guardian Response", interactive=False)
                judge_out = gr.Textbox(label="Judge's Response", interactive=False)
    
    with gr.Tab("Agent Perspectives"):
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("### βš–οΈ Depth Guardian")
                intervention_display = gr.Textbox(label="", interactive=False)
            with gr.Column(scale=1):
                gr.Markdown("### 🌐 Cross-Disciplinary")
                outsider_display = gr.Textbox(label="", interactive=False)
            with gr.Column(scale=1):
                gr.Markdown("### 🌍 Cultural Lens")
                cultural_display = gr.Textbox(label="", interactive=False)
        
        with gr.Row():
            with gr.Column(scale=3):
                gr.Markdown("### βš–οΈ Final Judgment")
                judge_display = gr.Textbox(label="", interactive=False, lines=4)
    
    with gr.Tab("Analysis Dashboard"):
        gr.Markdown("### Conversation Insights")
        with gr.Row():
            sentiment_display = gr.Textbox(label="Discussion Sentiment", interactive=False)
            topics_display = gr.JSON(label="Key Topics")
        
        with gr.Row():
            agent_plot = gr.Plot(label="Agent Participation")
            analysis_btn = gr.Button("Generate Insights", variant="primary")
        
        with gr.Row():
            gr.Markdown("### Knowledge Graph")
            graph_btn = gr.Button("Generate Knowledge Graph", variant="secondary")
            graph_display = gr.Image(label="Concept Relationships", interactive=False)
    
    with gr.Tab("Collaboration"):
        gr.Markdown("### Real-Time Collaboration")
        with gr.Row():
            user_input = gr.Textbox(label="Your Contribution", placeholder="Add your perspective...")
            submit_btn = gr.Button("Add to Discussion")
        
        with gr.Row():
            voting_btn = gr.Button("πŸ‘ Vote for Current Direction")
            flag_btn = gr.Button("🚩 Flag Issue")
        
        with gr.Row():
            user_feedback = gr.Textbox(label="Community Feedback", interactive=False)
    
    with gr.Tab("Export & Integrate"):
        with gr.Row():
            format_radio = gr.Radio(
                ["PDF Report", "JSON Data", "Text Transcript"], 
                label="Export Format",
                value="PDF Report"
            )
            export_btn = gr.Button("Export Discussion", variant="primary")
            export_result = gr.File(label="Download File")
        
        with gr.Row():
            gr.Markdown("### API Integration")
            webhook_url = gr.Textbox(label="Webhook URL", placeholder="https://your-platform.com/webhook")
            integrate_btn = gr.Button("Connect to External Platform", variant="secondary")
            integration_status = gr.Textbox(label="Status", interactive=False)
    
    with gr.Tab("Agent Configuration"):
        gr.Markdown("### Customize Agent Behavior")
        with gr.Row():
            agent_sliders = {}
            for agent in ["Initiator", "Responder", "Guardian", "Provocateur", "Cultural", "Judge"]:
                with gr.Column():
                    gr.Markdown(f"#### {agent}")
                    agent_sliders[f"{agent}_creativity"] = gr.Slider(
                        0.0, 1.0, value=0.7, 
                        label="Creativity", interactive=True
                    )
                    agent_sliders[f"{agent}_critical"] = gr.Slider(
                        0.0, 1.0, value=0.5, 
                        label="Criticality", interactive=True
                    )
    
    # Custom CSS
    demo.css = """
    .convo-container {
        max-height: 400px;
        overflow-y: auto;
        padding: 15px;
        border: 1px solid #e0e0e0;
        border-radius: 8px;
        background-color: #f9f9f9;
        line-height: 1.6;
    }
    .convo-container p {
        margin-bottom: 10px;
    }
    #topic-display {
        font-weight: bold;
        font-size: 1.1em;
    }
    """
    
    # Event handlers
    def clear_convo():
        global conversation, turn_count, current_topic
        conversation = []
        turn_count = 0
        current_topic = ""
        return (
            "<div class='convo-container'>New discussion started</div>", 
            "", "", "", "", "", 0, "",
            {"agents": [], "counts": []}, "", None, "", ""
        )
    
    def new_topic():
        clear_result = clear_convo()
        topic = generate_topic()
        return clear_result[:6] + (topic,) + clear_result[7:]
    
    # === OVERSEER QUERY HANDLER ===
    def overseer_respond(query):
        try:
            context = "\n".join([m['text'] for m in conversation[-3:]]) if conversation else "No context"
            messages = [{"role": "user", "content": f"Discussion Topic: {current_topic}\n\nRecent context:\n{context}\n\nQuery: {query}"}]
            return safe_chat_completion(
                OVERSEER_PROMPT, 
                messages,
                temperature=0.5 + agent_params["Guardian"]["criticality"] * 0.4
            )
        except Exception as e:
            return f"[Overseer Error: {str(e)}]"
    
    # === JUDGE RULING HANDLER ===
    def request_ruling():
        try:
            ruling = judge_ruling()
            conversation.append({"agent": "βš–οΈ Judge", "text": ruling})
            embed_and_store(ruling, "Judge")
            return ruling
        except Exception as e:
            return f"[Judge Error: {str(e)}]"
    
    def ask_judge(query):
        try:
            context = "\n".join([m['text'] for m in conversation[-3:]]) if conversation else "No context"
            messages = [{"role": "user", "content": f"Discussion Topic: {current_topic}\n\nRecent context:\n{context}\n\nSpecific Question: {query}"}]
            return safe_chat_completion(JUDGE_PROMPT, messages)
        except Exception as e:
            return f"[Judge Error: {str(e)}]"
    
    def run_analysis():
        analysis = analyze_conversation()
        
        # Create agent participation plot
        plt.figure(figsize=(8, 5))
        plt.bar(analysis["agents"], analysis["counts"], color='skyblue')
        plt.title("Agent Participation")
        plt.ylabel("Number of Contributions")
        plt.xticks(rotation=45)
        plt.tight_layout()
        plt.savefig("agent_participation.png")
        
        return (
            analysis["sentiment"],
            analysis["topics"],
            "agent_participation.png",
            analysis
        )
    
    def export_handler(format):
        if format == "PDF Report":
            return export_pdf_report()
        elif format == "JSON Data":
            return export_json_data()
        else:
            return export_text_transcript()
    
    def add_user_contribution(text):
        if text.strip():
            conversation.append({"agent": "πŸ‘€ You", "text": text})
            return format_convo(), f"βœ… Added: '{text[:30]}...'"
        return format_convo(), "Please enter text"
    
    def toggle_auto():
        global auto_mode
        auto_mode = not auto_mode
        if auto_mode:
            threading.Thread(target=auto_loop, daemon=True).start()
        return "πŸ”΄ Auto: OFF" if not auto_mode else "🟒 Auto: ON"
    
    def auto_loop():
        global auto_mode
        while auto_mode:
            step()
            time.sleep(6)
    
    def update_agent_params(init_creat, init_crit, resp_creat, resp_crit, 
                           guard_creat, guard_crit, prov_creat, prov_crit,
                           cult_creat, cult_crit, judge_creat, judge_crit):
        global agent_params
        agent_params = {
            "Initiator": {"creativity": init_creat, "criticality": init_crit},
            "Responder": {"creativity": resp_creat, "criticality": resp_crit},
            "Guardian": {"creativity": guard_creat, "criticality": guard_crit},
            "Provocateur": {"creativity": prov_creat, "criticality": prov_crit},
            "Cultural": {"creativity": cult_creat, "criticality": cult_crit},
            "Judge": {"creativity": judge_creat, "criticality": judge_crit}
        }
        return "βœ… Agent parameters updated!"
    
    # Connect UI components
    qbox.submit(
        overseer_respond, 
        inputs=qbox, 
        outputs=overseer_out
    )
    
    ruling_qbox.submit(
        ask_judge, 
        inputs=ruling_qbox, 
        outputs=judge_out
    )
    
    step_btn.click(
        step, 
        inputs=[topic_input],
        outputs=[
            convo_display, intervention_display, outsider_display, 
            cultural_display, judge_display, topic_display, turn_counter, agent_status
        ]
    )
    
    auto_btn.click(
        toggle_auto, 
        outputs=auto_btn
    )
    
    clear_btn.click(
        clear_convo, 
        outputs=[
            convo_display, intervention_display, outsider_display, 
            cultural_display, judge_display, topic_display, turn_counter,
            agent_status, agent_plot, graph_display, user_feedback
        ]
    )
    
    topic_btn.click(
        new_topic,
        outputs=[convo_display, topic_display, turn_counter]
    )
    
    ruling_btn.click(
        request_ruling,
        outputs=[judge_display]
    )
    
    analysis_btn.click(
        run_analysis,
        outputs=[sentiment_display, topics_display, agent_plot]
    )
    
    graph_btn.click(
        generate_knowledge_graph,
        outputs=[graph_display]
    )
    
    export_btn.click(
        export_handler,
        inputs=[format_radio],
        outputs=[export_result]
    )
    
    integrate_btn.click(
        send_to_webhook,
        inputs=[webhook_url],
        outputs=[integration_status]
    )
    
    submit_btn.click(
        add_user_contribution,
        inputs=[user_input],
        outputs=[convo_display, user_feedback]
    )
    
    voting_btn.click(
        lambda: "βœ… Your vote has been recorded!",
        outputs=[user_feedback]
    )
    
    flag_btn.click(
        lambda: "🚩 Issue flagged for moderator review",
        outputs=[user_feedback]
    )
    
    # Create input list for slider change events
    slider_inputs = [agent_sliders[f"{agent}_{param}"] 
                    for agent in ["Initiator", "Responder", "Guardian", "Provocateur", "Cultural", "Judge"]
                    for param in ["creativity", "critical"]]
    
    for slider in slider_inputs:
        slider.change(
            update_agent_params,
            inputs=slider_inputs,
            outputs=[gr.Textbox(visible=False)]
        )

demo.launch()