Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,60 +1,61 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
3 |
|
4 |
-
# Load the model and tokenizer
|
5 |
-
|
6 |
-
model = AutoModelForCausalLM.from_pretrained("unsloth/Llama-3.2-1B")
|
7 |
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
#
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
generated_text = text_gen_pipeline(prompt,
|
14 |
max_length=max_length,
|
15 |
temperature=temperature,
|
16 |
top_p=top_p,
|
17 |
top_k=top_k,
|
18 |
-
repetition_penalty=repetition_penalty,
|
19 |
-
no_repeat_ngram_size=no_repeat_ngram_size,
|
20 |
num_return_sequences=1)
|
21 |
return generated_text[0]['generated_text']
|
22 |
|
23 |
-
# Gradio
|
24 |
with gr.Blocks() as demo:
|
25 |
gr.Markdown("## Text Generation with Llama 3.2 - 1B")
|
|
|
26 |
|
27 |
-
# Input box for user prompt
|
28 |
prompt_input = gr.Textbox(label="Input (Prompt)", placeholder="Enter your prompt here...")
|
29 |
-
|
30 |
-
|
31 |
-
max_length_input = gr.Slider(minimum=10, maximum=200, value=50, step=10, label="Maximum Length")
|
32 |
-
|
33 |
-
# Slider for temperature (controls creativity)
|
34 |
-
temperature_input = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature (creativity)")
|
35 |
-
|
36 |
-
# Slider for top_p (nucleus sampling)
|
37 |
top_p_input = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top-p (nucleus sampling)")
|
|
|
|
|
|
|
38 |
|
39 |
-
# Slider for top_k (controls diversity)
|
40 |
-
top_k_input = gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top-k (sampling diversity)")
|
41 |
-
|
42 |
-
# Slider for repetition penalty
|
43 |
-
repetition_penalty_input = gr.Slider(minimum=1.0, maximum=2.0, value=1.2, step=0.1, label="Repetition Penalty")
|
44 |
-
|
45 |
-
# Slider for no_repeat_ngram_size
|
46 |
-
no_repeat_ngram_size_input = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="No Repeat N-Gram Size")
|
47 |
-
|
48 |
-
# Output box for the generated text
|
49 |
output_text = gr.Textbox(label="Generated Text")
|
50 |
-
|
51 |
-
# Submit button
|
52 |
generate_button = gr.Button("Generate")
|
53 |
|
54 |
-
# Action on button click
|
55 |
generate_button.click(generate_text,
|
56 |
inputs=[prompt_input, max_length_input, temperature_input, top_p_input, top_k_input, repetition_penalty_input, no_repeat_ngram_size_input],
|
57 |
outputs=output_text)
|
58 |
|
59 |
-
# Launch the app
|
60 |
demo.launch()
|
|
|
1 |
+
# Step 2: Import necessary libraries
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
4 |
|
5 |
+
# Step 3: Load the model and tokenizer
|
6 |
+
model_name = "unsloth/Llama-3.2-1B"
|
|
|
7 |
|
8 |
+
try:
|
9 |
+
# Attempt to load the tokenizer and model
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
12 |
+
print(f"Successfully loaded model: {model_name}")
|
13 |
+
except Exception as e:
|
14 |
+
# Handle errors and notify the user
|
15 |
+
print(f"Error loading model or tokenizer: {e}")
|
16 |
+
tokenizer = None
|
17 |
+
model = None
|
18 |
|
19 |
+
# Step 4: Use a pipeline for text generation if model is loaded
|
20 |
+
if model is not None and tokenizer is not None:
|
21 |
+
text_gen_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
22 |
+
else:
|
23 |
+
text_gen_pipeline = None
|
24 |
+
|
25 |
+
# Step 5: Define the text generation function
|
26 |
+
def generate_text(prompt, max_length=40, temperature=0.8, top_p=0.9, top_k=40, repetition_penalty=1.5, no_repeat_ngram_size=4):
|
27 |
+
if text_gen_pipeline is None:
|
28 |
+
return "Model not loaded. Please check the model name or try a different one."
|
29 |
+
|
30 |
generated_text = text_gen_pipeline(prompt,
|
31 |
max_length=max_length,
|
32 |
temperature=temperature,
|
33 |
top_p=top_p,
|
34 |
top_k=top_k,
|
35 |
+
repetition_penalty=repetition_penalty,
|
36 |
+
no_repeat_ngram_size=no_repeat_ngram_size,
|
37 |
num_return_sequences=1)
|
38 |
return generated_text[0]['generated_text']
|
39 |
|
40 |
+
# Step 6: Set up the Gradio interface
|
41 |
with gr.Blocks() as demo:
|
42 |
gr.Markdown("## Text Generation with Llama 3.2 - 1B")
|
43 |
+
gr.Markdown("For more details, check out this [Google Colab notebook](https://colab.research.google.com/drive/1TCyQNWMQzsjit_z3-0jHCQYfFTpawh8r#scrollTo=5-6MhJj0ZVpk).")
|
44 |
|
|
|
45 |
prompt_input = gr.Textbox(label="Input (Prompt)", placeholder="Enter your prompt here...")
|
46 |
+
max_length_input = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Maximum Length")
|
47 |
+
temperature_input = gr.Slider(minimum=0.1, maximum=1.0, value=0.8, step=0.1, label="Temperature (creativity)")
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
top_p_input = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top-p (nucleus sampling)")
|
49 |
+
top_k_input = gr.Slider(minimum=1, maximum=100, value=40, step=1, label="Top-k (sampling diversity)")
|
50 |
+
repetition_penalty_input = gr.Slider(minimum=1.0, maximum=2.0, value=1.5, step=0.1, label="Repetition Penalty")
|
51 |
+
no_repeat_ngram_size_input = gr.Slider(minimum=1, maximum=10, value=4, step=1, label="No Repeat N-Gram Size")
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
output_text = gr.Textbox(label="Generated Text")
|
|
|
|
|
54 |
generate_button = gr.Button("Generate")
|
55 |
|
|
|
56 |
generate_button.click(generate_text,
|
57 |
inputs=[prompt_input, max_length_input, temperature_input, top_p_input, top_k_input, repetition_penalty_input, no_repeat_ngram_size_input],
|
58 |
outputs=output_text)
|
59 |
|
60 |
+
# Step 7: Launch the app
|
61 |
demo.launch()
|