Leo8613 commited on
Commit
f55b4f4
·
verified ·
1 Parent(s): ca94c55

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -35
app.py CHANGED
@@ -1,40 +1,20 @@
1
- import os
2
- import subprocess
3
- import gradio as gr
4
- from deoldify.visualize import get_image_colorizer, get_video_colorizer
5
 
6
- # Vérifie si le dépôt DeOldify existe, sinon le clone
7
- if not os.path.exists("DeOldify"):
8
- subprocess.run(["git", "clone", "https://github.com/jantic/DeOldify.git"])
9
-
10
- # Change le répertoire de travail
11
- os.chdir("DeOldify")
12
 
13
- # Crée un fichier requirements.txt
14
- with open("requirements.txt", "w") as f:
15
- f.write("\ndeoldify\ngradio\ntorch\nopencv-python\n")
16
 
17
- # Installe les dépendances
18
- subprocess.run(["pip", "install", "-r", "requirements.txt"])
19
 
20
- # Initialiser les colorisateurs
21
- image_colorizer = get_image_colorizer()
22
- video_colorizer = get_video_colorizer()
23
 
24
- def colorize_image(input_image):
25
- # Processer l'image d'entrée et retourner la version colorisée
26
- colorized_image = image_colorizer.get_transformed_image(input_image)
27
- return colorized_image
28
-
29
- def colorize_video(input_video):
30
- # Processer la vidéo d'entrée et retourner la version colorisée
31
- colorized_video = video_colorizer.get_transformed_video(input_video)
32
- return colorized_video
33
-
34
- # Créer l'interface Gradio
35
- image_interface = gr.Interface(fn=colorize_image, inputs="image", outputs="image", title="Colorisation d'Image")
36
- video_interface = gr.Interface(fn=colorize_video, inputs="video", outputs="video", title="Colorisation de Vidéo")
37
-
38
- # Lancer les interfaces
39
- image_interface.launch(share=True)
40
- video_interface.launch(share=True)
 
1
+ from deoldify.visualize import get_video_colorizer
2
+ import torch
 
 
3
 
4
+ # Load the video colorization model
5
+ def load_video_model():
6
+ model_path = 'ColorizeVideo_gen.pth' # Path to the model in the root directory
7
+ video_colorizer = get_video_colorizer()
 
 
8
 
9
+ # Load the model's state from the .pth file
10
+ state = torch.load(model_path, map_location=torch.device('cpu')) # Adjust if using GPU
11
+ video_colorizer.learn.model.load_state_dict(state)
12
 
13
+ return video_colorizer
 
14
 
15
+ # Example usage of the video colorizer
16
+ video_colorizer = load_video_model()
 
17
 
18
+ # You can now use the colorizer to colorize a video
19
+ video_path = 'your_video.mp4'
20
+ colorized_video = video_colorizer.colorize_from_file_name(video_path, render_factor=35)