File size: 2,128 Bytes
523a420
 
526afa6
523a420
 
526afa6
523a420
ec6901a
523a420
 
1a2a575
523a420
 
 
 
 
 
1a2a575
523a420
 
 
 
 
 
 
5e6328b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
523a420
 
 
5e6328b
 
 
523a420
5e6328b
1a2a575
523a420
5e6328b
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# import streamlit as st
# from transformers import pipeline

# # Load the SQLCoder model
# sql_generator = pipeline('text-generation', model='defog/sqlcoder')

# st.title('SQL Table Extractor')

# # Text input for SQL query
# user_sql = st.text_input("Enter your SQL statement", "SELECT * FROM my_table WHERE condition;")

# # Button to parse SQL
# if st.button('Extract Tables'):
#     # Generate SQL or parse directly
#     results = sql_generator(user_sql)
#     # Assuming results contain SQL, extract table names (this part may require custom logic based on output)
#     tables = extract_tables_from_sql(results)
    
#     # Display extracted table names
#     st.write('Extracted Tables:', tables)

# def extract_tables_from_sql(sql):
#     # Dummy function: Implement logic to parse table names from SQL
#     return ["my_table"]  # Example output

# import streamlit as st
# from transformers import pipeline

# # Load the NER model
# ner = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english", grouped_entities=True)

# st.title('Hello World NER Parser')

# # User input for text
# user_input = st.text_area("Enter a sentence to parse for named entities:", "John Smith lives in San Francisco.")

# # Parse entities
# if st.button('Parse'):
#     entities = ner(user_input)
#     # Display extracted entities
#     for entity in entities:
#         st.write(f"Entity: {entity['word']}, Entity Type: {entity['entity_group']}")


import streamlit as st
from transformers import pipeline

# Load CodeBERT model as a feature extractor
# (Note: You may need to adjust the task if using CodeBERT for other specific purposes)
codebert = pipeline("feature-extraction", model="microsoft/codebert-base")

st.title('CodeBERT Feature Extractor')

# User input for text
user_input = st.text_area("Enter code or text to extract features:", "SELECT * FROM users;")

# Extract features
if st.button('Extract Features'):
    features = codebert(user_input)
    # Display extracted features (example: show size of feature vector for demonstration)
    st.write('Number of features extracted:', len(features[0][0]))