Commit
·
82654de
1
Parent(s):
1de3353
feat Only detail detect model
Browse files- app.py +32 -25
- config/settings.py +3 -2
- models/common.py +14 -14
- utils/data_processing.py +64 -40
app.py
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
-
import
|
2 |
import sys
|
3 |
from pathlib import Path
|
4 |
-
import
|
5 |
from utils.data_processing import detect_nsfw
|
6 |
-
|
|
|
7 |
FILE = Path(__file__).resolve()
|
8 |
ROOT = FILE.parents[0]
|
9 |
if str(ROOT) not in sys.path:
|
@@ -11,37 +12,43 @@ if str(ROOT) not in sys.path:
|
|
11 |
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))
|
12 |
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
# Gradio interface
|
18 |
with gr.Blocks() as demo:
|
19 |
-
gr.Markdown("# NSFW Content Detection")
|
20 |
-
|
21 |
-
|
22 |
with gr.Row():
|
23 |
-
conf_threshold = gr.Slider(0, 1, value=0.3, label="Confidence Threshold"
|
24 |
-
iou_threshold = gr.Slider(0, 1, value=0.45, label="Overlap Threshold"
|
25 |
-
label_mode = gr.Dropdown(
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
27 |
with gr.Row():
|
28 |
input_image = gr.Image(type="numpy", label="Upload an image or enter a URL")
|
29 |
output_text = gr.Textbox(label="Detection Result")
|
30 |
with gr.Row():
|
31 |
-
output_image = gr.Image(type="numpy", label="Processed Image (for detailed analysis)"
|
32 |
|
|
|
33 |
detect_button = gr.Button("Detect")
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
40 |
detect_button.click(
|
41 |
-
|
42 |
-
inputs=[input_image,
|
43 |
-
outputs=[output_text, output_image]
|
44 |
)
|
45 |
|
|
|
46 |
if __name__ == "__main__":
|
47 |
-
demo.launch(server_name="0.0.0.0")
|
|
|
1 |
+
import os
|
2 |
import sys
|
3 |
from pathlib import Path
|
4 |
+
import gradio as gr
|
5 |
from utils.data_processing import detect_nsfw
|
6 |
+
|
7 |
+
# YOLO-related module path setup
|
8 |
FILE = Path(__file__).resolve()
|
9 |
ROOT = FILE.parents[0]
|
10 |
if str(ROOT) not in sys.path:
|
|
|
12 |
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))
|
13 |
|
14 |
|
15 |
+
# Define the Gradio interface
|
|
|
|
|
|
|
16 |
with gr.Blocks() as demo:
|
17 |
+
gr.Markdown("# NSFW Content Detection - Detailed Analysis")
|
18 |
+
|
19 |
+
# Advanced parameters for Detailed Analysis
|
20 |
with gr.Row():
|
21 |
+
conf_threshold = gr.Slider(0, 1, value=0.3, label="Confidence Threshold")
|
22 |
+
iou_threshold = gr.Slider(0, 1, value=0.45, label="Overlap Threshold")
|
23 |
+
label_mode = gr.Dropdown(
|
24 |
+
["Draw box", "Draw Label", "Draw Confidence", "Censor Predictions"],
|
25 |
+
label="Label Display Mode",
|
26 |
+
value="Draw box",
|
27 |
+
)
|
28 |
+
|
29 |
+
# Input and output components
|
30 |
with gr.Row():
|
31 |
input_image = gr.Image(type="numpy", label="Upload an image or enter a URL")
|
32 |
output_text = gr.Textbox(label="Detection Result")
|
33 |
with gr.Row():
|
34 |
+
output_image = gr.Image(type="numpy", label="Processed Image (for detailed analysis)")
|
35 |
|
36 |
+
# Detection button
|
37 |
detect_button = gr.Button("Detect")
|
38 |
+
|
39 |
+
# Connect detection button to the detect_nsfw function
|
40 |
+
def safe_detect_nsfw(image, conf, iou, label):
|
41 |
+
try:
|
42 |
+
return detect_nsfw(image, "Detailed Analysis", conf, iou, label)
|
43 |
+
except Exception as e:
|
44 |
+
return f"Error during detection: {e}", None
|
45 |
+
|
46 |
detect_button.click(
|
47 |
+
safe_detect_nsfw,
|
48 |
+
inputs=[input_image, conf_threshold, iou_threshold, label_mode],
|
49 |
+
outputs=[output_text, output_image],
|
50 |
)
|
51 |
|
52 |
+
# Launch the Gradio app
|
53 |
if __name__ == "__main__":
|
54 |
+
demo.launch(server_name="0.0.0.0")
|
config/settings.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
import os
|
|
|
2 |
# 프로젝트 루트 디렉토리 경로 얻기
|
3 |
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
4 |
|
5 |
# MODEL_PATH를 절대 경로로 설정
|
6 |
-
DETECT_MODEL_PATH = os.path.join(BASE_DIR,
|
7 |
-
CLASSIFICATION_MODEL_PATH = "Falconsai/nsfw_image_detection"
|
|
|
1 |
import os
|
2 |
+
|
3 |
# 프로젝트 루트 디렉토리 경로 얻기
|
4 |
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
5 |
|
6 |
# MODEL_PATH를 절대 경로로 설정
|
7 |
+
DETECT_MODEL_PATH = os.path.join(BASE_DIR, "weights", "yolov9_c_nsfw.pt")
|
8 |
+
# CLASSIFICATION_MODEL_PATH = "Falconsai/nsfw_image_detection"
|
models/common.py
CHANGED
@@ -30,7 +30,7 @@ from utils.general import (LOGGER, ROOT, Profile, check_requirements, check_suff
|
|
30 |
xywh2xyxy, xyxy2xywh, yaml_load)
|
31 |
from utils.plots import Annotator, colors, save_one_box
|
32 |
from utils.torch_utils import copy_attr, smart_inference_mode
|
33 |
-
from config.settings import CLASSIFICATION_MODEL_PATH
|
34 |
|
35 |
def autopad(k, p=None, d=1): # kernel, padding, dilation
|
36 |
# Pad to 'same' shape outputs
|
@@ -1200,17 +1200,17 @@ class Classify(nn.Module):
|
|
1200 |
x = torch.cat(x, 1)
|
1201 |
return self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
|
1202 |
|
1203 |
-
class NSFWModel:
|
1204 |
-
|
1205 |
-
|
1206 |
-
|
1207 |
-
|
1208 |
-
|
1209 |
-
|
1210 |
-
|
1211 |
-
|
1212 |
-
|
1213 |
-
|
1214 |
-
|
1215 |
|
1216 |
-
|
|
|
30 |
xywh2xyxy, xyxy2xywh, yaml_load)
|
31 |
from utils.plots import Annotator, colors, save_one_box
|
32 |
from utils.torch_utils import copy_attr, smart_inference_mode
|
33 |
+
# from config.settings import CLASSIFICATION_MODEL_PATH
|
34 |
|
35 |
def autopad(k, p=None, d=1): # kernel, padding, dilation
|
36 |
# Pad to 'same' shape outputs
|
|
|
1200 |
x = torch.cat(x, 1)
|
1201 |
return self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
|
1202 |
|
1203 |
+
# class NSFWModel:
|
1204 |
+
# def __init__(self):
|
1205 |
+
# self.model = AutoModelForImageClassification.from_pretrained(CLASSIFICATION_MODEL_PATH, local_files_only=True)
|
1206 |
+
# self.processor = ViTImageProcessor.from_pretrained(CLASSIFICATION_MODEL_PATH, local_files_only=True)
|
1207 |
+
# self.id2label = self.model.config.id2label
|
1208 |
+
|
1209 |
+
# def predict(self, image: Image.Image) -> str:
|
1210 |
+
# with torch.no_grad():
|
1211 |
+
# inputs = self.processor(images=image, return_tensors="pt")
|
1212 |
+
# outputs = self.model(**inputs)
|
1213 |
+
# logits = outputs.logits
|
1214 |
+
# predicted_label = logits.argmax(-1).item()
|
1215 |
|
1216 |
+
# return self.id2label[predicted_label]
|
utils/data_processing.py
CHANGED
@@ -6,43 +6,53 @@ from io import BytesIO
|
|
6 |
import torch
|
7 |
import gradio as gr
|
8 |
|
9 |
-
from models.common import DetectMultiBackend, NSFWModel
|
10 |
from utils.torch_utils import select_device
|
11 |
-
from utils.general import
|
12 |
from utils.plots import Annotator, colors
|
13 |
from config.settings import DETECT_MODEL_PATH
|
14 |
|
15 |
-
# Load classification model
|
16 |
-
nsfw_model = NSFWModel()
|
17 |
|
18 |
# Load YOLO model
|
19 |
-
device = select_device(
|
20 |
yolo_model = DetectMultiBackend(DETECT_MODEL_PATH, device=device, dnn=False, data=None, fp16=False)
|
21 |
stride, names, pt = yolo_model.stride, yolo_model.names, yolo_model.pt
|
22 |
imgsz = check_img_size((640, 640), s=stride)
|
23 |
|
|
|
24 |
def resize_and_pad(image, target_size):
|
25 |
ih, iw = image.shape[:2]
|
26 |
target_h, target_w = target_size
|
27 |
|
28 |
# 이미지의 가로세로 비율 계산
|
29 |
-
scale = min(target_h/ih, target_w/iw)
|
30 |
-
|
31 |
# 새로운 크기 계산
|
32 |
new_h, new_w = int(ih * scale), int(iw * scale)
|
33 |
-
|
34 |
# 이미지 리사이즈
|
35 |
resized = cv2.resize(image, (new_w, new_h))
|
36 |
-
|
37 |
# 패딩 계산
|
38 |
pad_h = (target_h - new_h) // 2
|
39 |
pad_w = (target_w - new_w) // 2
|
40 |
-
|
41 |
# 패딩 추가
|
42 |
-
padded = cv2.copyMakeBorder(
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
return padded
|
45 |
|
|
|
46 |
def process_image_yolo(image, conf_threshold, iou_threshold, label_mode):
|
47 |
# Image preprocessing
|
48 |
im = torch.from_numpy(image).to(device).permute(2, 0, 1)
|
@@ -50,15 +60,15 @@ def process_image_yolo(image, conf_threshold, iou_threshold, label_mode):
|
|
50 |
im /= 255
|
51 |
if len(im.shape) == 3:
|
52 |
im = im[None]
|
53 |
-
|
54 |
# Resize image
|
55 |
-
im = torch.nn.functional.interpolate(im, size=imgsz, mode=
|
56 |
-
|
57 |
# Inference
|
58 |
pred = yolo_model(im, augment=False, visualize=False)
|
59 |
if isinstance(pred, list):
|
60 |
pred = pred[0]
|
61 |
-
|
62 |
# NMS
|
63 |
pred = non_max_suppression(pred, conf_threshold, iou_threshold, None, False, max_det=1000)
|
64 |
|
@@ -66,61 +76,75 @@ def process_image_yolo(image, conf_threshold, iou_threshold, label_mode):
|
|
66 |
img = image.copy()
|
67 |
harmful_label_list = []
|
68 |
annotations = []
|
69 |
-
|
70 |
for i, det in enumerate(pred):
|
71 |
if len(det):
|
72 |
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], img.shape).round()
|
73 |
-
|
74 |
for *xyxy, conf, cls in reversed(det):
|
75 |
c = int(cls)
|
76 |
if c != 6:
|
77 |
harmful_label_list.append(c)
|
78 |
-
|
79 |
annotation = {
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
84 |
}
|
85 |
annotations.append(annotation)
|
86 |
-
|
87 |
if 4 in harmful_label_list and 10 in harmful_label_list:
|
88 |
gr.Warning("Warning: This image is featuring underwear.")
|
89 |
elif harmful_label_list:
|
90 |
gr.Error("Warning: This image may contain harmful content.")
|
91 |
img = cv2.GaussianBlur(img, (125, 125), 0)
|
92 |
else:
|
93 |
-
gr.Info(
|
94 |
-
|
95 |
annotator = Annotator(img, line_width=3, example=str(names))
|
96 |
-
|
97 |
for ann in annotations:
|
98 |
if label_mode == "Draw box":
|
99 |
-
annotator.box_label(ann[
|
100 |
elif label_mode in ["Draw Label", "Draw Confidence"]:
|
101 |
-
annotator.box_label(ann[
|
102 |
elif label_mode == "Censor Predictions":
|
103 |
-
cv2.rectangle(
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
return annotator.result()
|
106 |
|
107 |
-
|
|
|
108 |
if isinstance(input_image, str): # URL input
|
109 |
response = requests.get(input_image)
|
110 |
image = Image.open(BytesIO(response.content))
|
111 |
else: # File upload
|
112 |
image = Image.fromarray(input_image)
|
113 |
-
|
114 |
image_np = np.array(image)
|
115 |
if len(image_np.shape) == 2: # grayscale
|
116 |
image_np = cv2.cvtColor(image_np, cv2.COLOR_GRAY2RGB)
|
117 |
elif image_np.shape[2] == 4: # RGBA
|
118 |
image_np = cv2.cvtColor(image_np, cv2.COLOR_RGBA2RGB)
|
119 |
-
|
120 |
-
if detection_mode == "Simple Check":
|
121 |
-
|
122 |
-
|
123 |
-
else: # Detailed Analysis
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
6 |
import torch
|
7 |
import gradio as gr
|
8 |
|
9 |
+
from models.common import DetectMultiBackend # , NSFWModel
|
10 |
from utils.torch_utils import select_device
|
11 |
+
from utils.general import check_img_size, non_max_suppression, scale_boxes
|
12 |
from utils.plots import Annotator, colors
|
13 |
from config.settings import DETECT_MODEL_PATH
|
14 |
|
15 |
+
# # Load classification model
|
16 |
+
# nsfw_model = NSFWModel()
|
17 |
|
18 |
# Load YOLO model
|
19 |
+
device = select_device("")
|
20 |
yolo_model = DetectMultiBackend(DETECT_MODEL_PATH, device=device, dnn=False, data=None, fp16=False)
|
21 |
stride, names, pt = yolo_model.stride, yolo_model.names, yolo_model.pt
|
22 |
imgsz = check_img_size((640, 640), s=stride)
|
23 |
|
24 |
+
|
25 |
def resize_and_pad(image, target_size):
|
26 |
ih, iw = image.shape[:2]
|
27 |
target_h, target_w = target_size
|
28 |
|
29 |
# 이미지의 가로세로 비율 계산
|
30 |
+
scale = min(target_h / ih, target_w / iw)
|
31 |
+
|
32 |
# 새로운 크기 계산
|
33 |
new_h, new_w = int(ih * scale), int(iw * scale)
|
34 |
+
|
35 |
# 이미지 리사이즈
|
36 |
resized = cv2.resize(image, (new_w, new_h))
|
37 |
+
|
38 |
# 패딩 계산
|
39 |
pad_h = (target_h - new_h) // 2
|
40 |
pad_w = (target_w - new_w) // 2
|
41 |
+
|
42 |
# 패딩 추가
|
43 |
+
padded = cv2.copyMakeBorder(
|
44 |
+
resized,
|
45 |
+
pad_h,
|
46 |
+
target_h - new_h - pad_h,
|
47 |
+
pad_w,
|
48 |
+
target_w - new_w - pad_w,
|
49 |
+
cv2.BORDER_CONSTANT,
|
50 |
+
value=[0, 0, 0],
|
51 |
+
)
|
52 |
+
|
53 |
return padded
|
54 |
|
55 |
+
|
56 |
def process_image_yolo(image, conf_threshold, iou_threshold, label_mode):
|
57 |
# Image preprocessing
|
58 |
im = torch.from_numpy(image).to(device).permute(2, 0, 1)
|
|
|
60 |
im /= 255
|
61 |
if len(im.shape) == 3:
|
62 |
im = im[None]
|
63 |
+
|
64 |
# Resize image
|
65 |
+
im = torch.nn.functional.interpolate(im, size=imgsz, mode="bilinear", align_corners=False)
|
66 |
+
|
67 |
# Inference
|
68 |
pred = yolo_model(im, augment=False, visualize=False)
|
69 |
if isinstance(pred, list):
|
70 |
pred = pred[0]
|
71 |
+
|
72 |
# NMS
|
73 |
pred = non_max_suppression(pred, conf_threshold, iou_threshold, None, False, max_det=1000)
|
74 |
|
|
|
76 |
img = image.copy()
|
77 |
harmful_label_list = []
|
78 |
annotations = []
|
79 |
+
|
80 |
for i, det in enumerate(pred):
|
81 |
if len(det):
|
82 |
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], img.shape).round()
|
83 |
+
|
84 |
for *xyxy, conf, cls in reversed(det):
|
85 |
c = int(cls)
|
86 |
if c != 6:
|
87 |
harmful_label_list.append(c)
|
88 |
+
|
89 |
annotation = {
|
90 |
+
"xyxy": xyxy,
|
91 |
+
"conf": conf,
|
92 |
+
"cls": c,
|
93 |
+
"label": (
|
94 |
+
f"{names[c]} {conf:.2f}"
|
95 |
+
if label_mode == "Draw Confidence"
|
96 |
+
else f"{names[c]}"
|
97 |
+
),
|
98 |
}
|
99 |
annotations.append(annotation)
|
100 |
+
|
101 |
if 4 in harmful_label_list and 10 in harmful_label_list:
|
102 |
gr.Warning("Warning: This image is featuring underwear.")
|
103 |
elif harmful_label_list:
|
104 |
gr.Error("Warning: This image may contain harmful content.")
|
105 |
img = cv2.GaussianBlur(img, (125, 125), 0)
|
106 |
else:
|
107 |
+
gr.Info("This image appears to be safe.")
|
108 |
+
|
109 |
annotator = Annotator(img, line_width=3, example=str(names))
|
110 |
+
|
111 |
for ann in annotations:
|
112 |
if label_mode == "Draw box":
|
113 |
+
annotator.box_label(ann["xyxy"], None, color=colors(ann["cls"], True))
|
114 |
elif label_mode in ["Draw Label", "Draw Confidence"]:
|
115 |
+
annotator.box_label(ann["xyxy"], ann["label"], color=colors(ann["cls"], True))
|
116 |
elif label_mode == "Censor Predictions":
|
117 |
+
cv2.rectangle(
|
118 |
+
img,
|
119 |
+
(int(ann["xyxy"][0]), int(ann["xyxy"][1])),
|
120 |
+
(int(ann["xyxy"][2]), int(ann["xyxy"][3])),
|
121 |
+
(0, 0, 0),
|
122 |
+
-1,
|
123 |
+
)
|
124 |
|
125 |
return annotator.result()
|
126 |
|
127 |
+
|
128 |
+
def detect_nsfw(input_image, conf_threshold=0.3, iou_threshold=0.45, label_mode="Draw box"):
|
129 |
if isinstance(input_image, str): # URL input
|
130 |
response = requests.get(input_image)
|
131 |
image = Image.open(BytesIO(response.content))
|
132 |
else: # File upload
|
133 |
image = Image.fromarray(input_image)
|
134 |
+
|
135 |
image_np = np.array(image)
|
136 |
if len(image_np.shape) == 2: # grayscale
|
137 |
image_np = cv2.cvtColor(image_np, cv2.COLOR_GRAY2RGB)
|
138 |
elif image_np.shape[2] == 4: # RGBA
|
139 |
image_np = cv2.cvtColor(image_np, cv2.COLOR_RGBA2RGB)
|
140 |
+
|
141 |
+
# if detection_mode == "Simple Check":
|
142 |
+
# result = nsfw_model.predict(image)
|
143 |
+
# return result, None
|
144 |
+
# else: # Detailed Analysis
|
145 |
+
# image_np = resize_and_pad(image_np, imgsz) # 여기서 imgsz는 (640, 640)
|
146 |
+
# processed_image = process_image_yolo(image_np, conf_threshold, iou_threshold, label_mode)
|
147 |
+
# return "Detailed analysis completed. See the image for results.", processed_image
|
148 |
+
image_np = resize_and_pad(image_np, imgsz) # 여기서 imgsz는 (640, 640)
|
149 |
+
processed_image = process_image_yolo(image_np, conf_threshold, iou_threshold, label_mode)
|
150 |
+
return "Detailed analysis completed. See the image for results.", processed_image
|