|
import torch |
|
|
|
from utils.general import check_version |
|
|
|
TORCH_1_10 = check_version(torch.__version__, '1.10.0') |
|
|
|
|
|
def make_anchors(feats, strides, grid_cell_offset=0.5): |
|
"""Generate anchors from features.""" |
|
anchor_points, stride_tensor = [], [] |
|
assert feats is not None |
|
dtype, device = feats[0].dtype, feats[0].device |
|
for i, stride in enumerate(strides): |
|
_, _, h, w = feats[i].shape |
|
sx = torch.arange(end=w, device=device, dtype=dtype) + grid_cell_offset |
|
sy = torch.arange(end=h, device=device, dtype=dtype) + grid_cell_offset |
|
sy, sx = torch.meshgrid(sy, sx, indexing='ij') if TORCH_1_10 else torch.meshgrid(sy, sx) |
|
anchor_points.append(torch.stack((sx, sy), -1).view(-1, 2)) |
|
stride_tensor.append(torch.full((h * w, 1), stride, dtype=dtype, device=device)) |
|
return torch.cat(anchor_points), torch.cat(stride_tensor) |
|
|
|
|
|
def dist2bbox(distance, anchor_points, xywh=True, dim=-1): |
|
"""Transform distance(ltrb) to box(xywh or xyxy).""" |
|
lt, rb = torch.split(distance, 2, dim) |
|
x1y1 = anchor_points - lt |
|
x2y2 = anchor_points + rb |
|
if xywh: |
|
c_xy = (x1y1 + x2y2) / 2 |
|
wh = x2y2 - x1y1 |
|
return torch.cat((c_xy, wh), dim) |
|
return torch.cat((x1y1, x2y2), dim) |
|
|
|
|
|
def bbox2dist(anchor_points, bbox, reg_max): |
|
"""Transform bbox(xyxy) to dist(ltrb).""" |
|
x1y1, x2y2 = torch.split(bbox, 2, -1) |
|
return torch.cat((anchor_points - x1y1, x2y2 - anchor_points), -1).clamp(0, reg_max - 0.01) |
|
|