|
"""Main Logger class for ClearML experiment tracking.""" |
|
import glob |
|
import re |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import yaml |
|
|
|
from utils.plots import Annotator, colors |
|
|
|
try: |
|
import clearml |
|
from clearml import Dataset, Task |
|
|
|
assert hasattr(clearml, '__version__') |
|
except (ImportError, AssertionError): |
|
clearml = None |
|
|
|
|
|
def construct_dataset(clearml_info_string): |
|
"""Load in a clearml dataset and fill the internal data_dict with its contents. |
|
""" |
|
dataset_id = clearml_info_string.replace('clearml://', '') |
|
dataset = Dataset.get(dataset_id=dataset_id) |
|
dataset_root_path = Path(dataset.get_local_copy()) |
|
|
|
|
|
yaml_filenames = list(glob.glob(str(dataset_root_path / "*.yaml")) + glob.glob(str(dataset_root_path / "*.yml"))) |
|
if len(yaml_filenames) > 1: |
|
raise ValueError('More than one yaml file was found in the dataset root, cannot determine which one contains ' |
|
'the dataset definition this way.') |
|
elif len(yaml_filenames) == 0: |
|
raise ValueError('No yaml definition found in dataset root path, check that there is a correct yaml file ' |
|
'inside the dataset root path.') |
|
with open(yaml_filenames[0]) as f: |
|
dataset_definition = yaml.safe_load(f) |
|
|
|
assert set(dataset_definition.keys()).issuperset( |
|
{'train', 'test', 'val', 'nc', 'names'} |
|
), "The right keys were not found in the yaml file, make sure it at least has the following keys: ('train', 'test', 'val', 'nc', 'names')" |
|
|
|
data_dict = dict() |
|
data_dict['train'] = str( |
|
(dataset_root_path / dataset_definition['train']).resolve()) if dataset_definition['train'] else None |
|
data_dict['test'] = str( |
|
(dataset_root_path / dataset_definition['test']).resolve()) if dataset_definition['test'] else None |
|
data_dict['val'] = str( |
|
(dataset_root_path / dataset_definition['val']).resolve()) if dataset_definition['val'] else None |
|
data_dict['nc'] = dataset_definition['nc'] |
|
data_dict['names'] = dataset_definition['names'] |
|
|
|
return data_dict |
|
|
|
|
|
class ClearmlLogger: |
|
"""Log training runs, datasets, models, and predictions to ClearML. |
|
|
|
This logger sends information to ClearML at app.clear.ml or to your own hosted server. By default, |
|
this information includes hyperparameters, system configuration and metrics, model metrics, code information and |
|
basic data metrics and analyses. |
|
|
|
By providing additional command line arguments to train.py, datasets, |
|
models and predictions can also be logged. |
|
""" |
|
|
|
def __init__(self, opt, hyp): |
|
""" |
|
- Initialize ClearML Task, this object will capture the experiment |
|
- Upload dataset version to ClearML Data if opt.upload_dataset is True |
|
|
|
arguments: |
|
opt (namespace) -- Commandline arguments for this run |
|
hyp (dict) -- Hyperparameters for this run |
|
|
|
""" |
|
self.current_epoch = 0 |
|
|
|
self.current_epoch_logged_images = set() |
|
|
|
self.max_imgs_to_log_per_epoch = 16 |
|
|
|
self.bbox_interval = opt.bbox_interval |
|
self.clearml = clearml |
|
self.task = None |
|
self.data_dict = None |
|
if self.clearml: |
|
self.task = Task.init( |
|
project_name=opt.project if opt.project != 'runs/train' else 'YOLOv5', |
|
task_name=opt.name if opt.name != 'exp' else 'Training', |
|
tags=['YOLOv5'], |
|
output_uri=True, |
|
auto_connect_frameworks={'pytorch': False} |
|
|
|
) |
|
|
|
|
|
|
|
self.task.connect(hyp, name='Hyperparameters') |
|
|
|
|
|
if opt.data.startswith('clearml://'): |
|
|
|
|
|
self.data_dict = construct_dataset(opt.data) |
|
|
|
|
|
opt.data = self.data_dict |
|
|
|
def log_debug_samples(self, files, title='Debug Samples'): |
|
""" |
|
Log files (images) as debug samples in the ClearML task. |
|
|
|
arguments: |
|
files (List(PosixPath)) a list of file paths in PosixPath format |
|
title (str) A title that groups together images with the same values |
|
""" |
|
for f in files: |
|
if f.exists(): |
|
it = re.search(r'_batch(\d+)', f.name) |
|
iteration = int(it.groups()[0]) if it else 0 |
|
self.task.get_logger().report_image(title=title, |
|
series=f.name.replace(it.group(), ''), |
|
local_path=str(f), |
|
iteration=iteration) |
|
|
|
def log_image_with_boxes(self, image_path, boxes, class_names, image, conf_threshold=0.25): |
|
""" |
|
Draw the bounding boxes on a single image and report the result as a ClearML debug sample. |
|
|
|
arguments: |
|
image_path (PosixPath) the path the original image file |
|
boxes (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class] |
|
class_names (dict): dict containing mapping of class int to class name |
|
image (Tensor): A torch tensor containing the actual image data |
|
""" |
|
if len(self.current_epoch_logged_images) < self.max_imgs_to_log_per_epoch and self.current_epoch >= 0: |
|
|
|
if self.current_epoch % self.bbox_interval == 0 and image_path not in self.current_epoch_logged_images: |
|
im = np.ascontiguousarray(np.moveaxis(image.mul(255).clamp(0, 255).byte().cpu().numpy(), 0, 2)) |
|
annotator = Annotator(im=im, pil=True) |
|
for i, (conf, class_nr, box) in enumerate(zip(boxes[:, 4], boxes[:, 5], boxes[:, :4])): |
|
color = colors(i) |
|
|
|
class_name = class_names[int(class_nr)] |
|
confidence_percentage = round(float(conf) * 100, 2) |
|
label = f"{class_name}: {confidence_percentage}%" |
|
|
|
if conf > conf_threshold: |
|
annotator.rectangle(box.cpu().numpy(), outline=color) |
|
annotator.box_label(box.cpu().numpy(), label=label, color=color) |
|
|
|
annotated_image = annotator.result() |
|
self.task.get_logger().report_image(title='Bounding Boxes', |
|
series=image_path.name, |
|
iteration=self.current_epoch, |
|
image=annotated_image) |
|
self.current_epoch_logged_images.add(image_path) |
|
|