adult_image_detector / utils /data_processing.py
LearningnRunning's picture
Update represent result
b3673c2
import cv2
import numpy as np
from PIL import Image
import requests
from io import BytesIO
import torch
import gradio as gr
from models.common import DetectMultiBackend # , NSFWModel
from utils.torch_utils import select_device
from utils.general import check_img_size, non_max_suppression, scale_boxes
from utils.plots import Annotator, colors
from config.settings import DETECT_MODEL_PATH
# # Load classification model
# nsfw_model = NSFWModel()
# Load YOLO model
device = select_device("")
yolo_model = DetectMultiBackend(DETECT_MODEL_PATH, device=device, dnn=False, data=None, fp16=False)
stride, names, pt = yolo_model.stride, yolo_model.names, yolo_model.pt
imgsz = check_img_size((640, 640), s=stride)
def resize_and_pad(image, target_size):
ih, iw = image.shape[:2]
target_h, target_w = target_size
# 이미지의 가로세로 비율 계산
scale = min(target_h / ih, target_w / iw)
# 새로운 크기 계산
new_h, new_w = int(ih * scale), int(iw * scale)
# 이미지 리사이즈
resized = cv2.resize(image, (new_w, new_h))
# 패딩 계산
pad_h = (target_h - new_h) // 2
pad_w = (target_w - new_w) // 2
# 패딩 추가
padded = cv2.copyMakeBorder(
resized,
pad_h,
target_h - new_h - pad_h,
pad_w,
target_w - new_w - pad_w,
cv2.BORDER_CONSTANT,
value=[0, 0, 0],
)
return padded
def process_image_yolo(image, conf_threshold, iou_threshold, label_mode):
# Image preprocessing
im = torch.from_numpy(image).to(device).permute(2, 0, 1)
im = im.half() if yolo_model.fp16 else im.float()
im /= 255
if len(im.shape) == 3:
im = im[None]
# Resize image
im = torch.nn.functional.interpolate(im, size=imgsz, mode="bilinear", align_corners=False)
# Inference
pred = yolo_model(im, augment=False, visualize=False)
if isinstance(pred, list):
pred = pred[0]
# NMS
pred = non_max_suppression(pred, conf_threshold, iou_threshold, None, False, max_det=1000)
# Process results
img = image.copy()
harmful_label_list = []
annotations = []
label_counts = {}
for i, det in enumerate(pred):
if len(det):
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], img.shape).round()
for *xyxy, conf, cls in reversed(det):
c = int(cls)
harmful_label_list.append(c)
label_name = names[c]
label_counts[label_name] = label_counts.get(label_name, 0) + 1
annotation = {
"xyxy": xyxy,
"conf": conf,
"cls": c,
"label": (
f"{names[c]} {conf:.2f}"
if label_mode == "Draw Confidence"
else f"{names[c]}"
),
}
annotations.append(annotation)
# Annotate image
annotator = Annotator(img, line_width=3, example=str(names))
for ann in annotations:
if label_mode == "Draw box":
annotator.box_label(ann["xyxy"], None, color=colors(ann["cls"], True))
elif label_mode in ["Draw Label", "Draw Confidence"]:
annotator.box_label(ann["xyxy"], ann["label"], color=colors(ann["cls"], True))
elif label_mode == "Censor Predictions":
cv2.rectangle(
img,
(int(ann["xyxy"][0]), int(ann["xyxy"][1])),
(int(ann["xyxy"][2]), int(ann["xyxy"][3])),
(0, 0, 0),
-1,
)
return annotator.result(), label_counts
def detect_nsfw(input_image, conf_threshold=0.3, iou_threshold=0.45, label_mode="Draw box"):
if isinstance(input_image, str): # URL input
response = requests.get(input_image)
image = Image.open(BytesIO(response.content))
else: # File upload
image = Image.fromarray(input_image)
image_np = np.array(image)
if len(image_np.shape) == 2: # grayscale
image_np = cv2.cvtColor(image_np, cv2.COLOR_GRAY2RGB)
elif image_np.shape[2] == 4: # RGBA
image_np = cv2.cvtColor(image_np, cv2.COLOR_RGBA2RGB)
# if detection_mode == "Simple Check":
# result = nsfw_model.predict(image)
# return result, None
# else: # Detailed Analysis
# image_np = resize_and_pad(image_np, imgsz) # 여기서 imgsz는 (640, 640)
# processed_image = process_image_yolo(image_np, conf_threshold, iou_threshold, label_mode)
# return "Detailed analysis completed. See the image for results.", processed_image
# Resize image and process with YOLO
image_np = resize_and_pad(image_np, imgsz) # 여기서 imgsz는 (640, 640)
processed_image, label_counts = process_image_yolo(
image_np, conf_threshold, iou_threshold, label_mode
)
# Construct detailed result text
if "head" in label_counts and len(label_counts) == 1:
head_count = label_counts["head"]
result_text = (
f"Detected content:\n - head: {head_count} instance(s)\nThis image appears to be safe."
)
elif label_counts:
result_text = "Detected content:\n"
for label, count in label_counts.items():
result_text += f" - {label}: {count} instance(s)\n"
else:
result_text = "This image appears to be safe."
return result_text, processed_image