LearningnRunning's picture
fix: model path
30d9209
from fastapi import File, UploadFile, Form
from fastapi.responses import JSONResponse
from PIL import Image
import io
import numpy as np
import torch
from .general import non_max_suppression, scale_boxes
from models.common import DetectMultiBackend
from config.settings import MODEL_PATH
from .torch_utils import select_device
# 모델 로드
device = select_device('')
model = DetectMultiBackend(MODEL_PATH, device=device, dnn=False, data='data/coco128.yaml', fp16=False)
names = model.names
imgsz = (640, 640)
async def process_image_api(
file: UploadFile = File(...),
conf_threshold: float = Form(0.25),
iou_threshold: float = Form(0.45),
label_mode: str = Form("Draw Confidence")
):
contents = await file.read()
image = Image.open(io.BytesIO(contents))
image_np = np.array(image)
result = process_image(image_np, conf_threshold, iou_threshold, label_mode)
return JSONResponse(content={"result": result.result})
def process_image(image, conf_threshold, iou_threshold, label_mode):
# 이미지 전처리
im = torch.from_numpy(image).to(device).permute(2, 0, 1) # HWC to CHW
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim
# 이미지 크기 조정
im = torch.nn.functional.interpolate(im, size=imgsz, mode='bilinear', align_corners=False)
# 추론
pred = model(im, augment=False, visualize=False)
if isinstance(pred, list):
pred = pred[0] # 첫 번째 요소 선택 (일반적으로 단일 이미지 추론의 경우)
# NMS
pred = non_max_suppression(pred, conf_threshold, iou_threshold, None, False, max_det=1000)
# 결과 처리
img = image.copy()
harmful_label_list = []
annotations = []
for i, det in enumerate(pred): # per image
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], img.shape).round()
# Write results
for *xyxy, conf, cls in reversed(det):
c = int(cls) # integer class
if c != 6:
harmful_label_list.append(c)
annotation = {
'xyxy': xyxy,
'conf': float(conf),
'cls': c,
'label': f"{names[c]} {conf:.2f}" if label_mode == "Draw Confidence" else f"{names[c]}"
}
annotations.append(annotation)
result = 'nsfw' if harmful_label_list else 'nomal'
return ProcessResponse(result=result)
class ProcessResponse:
def __init__(self, result: int):
self.result = result
# self.annotations = annotations