|
"""PyTorch implementation of the Lion optimizer.""" |
|
import torch |
|
from torch.optim.optimizer import Optimizer |
|
|
|
|
|
class Lion(Optimizer): |
|
r"""Implements Lion algorithm.""" |
|
|
|
def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0.0): |
|
"""Initialize the hyperparameters. |
|
Args: |
|
params (iterable): iterable of parameters to optimize or dicts defining |
|
parameter groups |
|
lr (float, optional): learning rate (default: 1e-4) |
|
betas (Tuple[float, float], optional): coefficients used for computing |
|
running averages of gradient and its square (default: (0.9, 0.99)) |
|
weight_decay (float, optional): weight decay coefficient (default: 0) |
|
""" |
|
|
|
if not 0.0 <= lr: |
|
raise ValueError('Invalid learning rate: {}'.format(lr)) |
|
if not 0.0 <= betas[0] < 1.0: |
|
raise ValueError('Invalid beta parameter at index 0: {}'.format(betas[0])) |
|
if not 0.0 <= betas[1] < 1.0: |
|
raise ValueError('Invalid beta parameter at index 1: {}'.format(betas[1])) |
|
defaults = dict(lr=lr, betas=betas, weight_decay=weight_decay) |
|
super().__init__(params, defaults) |
|
|
|
@torch.no_grad() |
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
Args: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
Returns: |
|
the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
|
|
|
|
p.data.mul_(1 - group['lr'] * group['weight_decay']) |
|
|
|
grad = p.grad |
|
state = self.state[p] |
|
|
|
if len(state) == 0: |
|
|
|
state['exp_avg'] = torch.zeros_like(p) |
|
|
|
exp_avg = state['exp_avg'] |
|
beta1, beta2 = group['betas'] |
|
|
|
|
|
update = exp_avg * beta1 + grad * (1 - beta1) |
|
p.add_(torch.sign(update), alpha=-group['lr']) |
|
|
|
exp_avg.mul_(beta2).add_(grad, alpha=1 - beta2) |
|
|
|
return loss |